The effect of obesity on the formation of cancer risk in patients with type 2 diabetes mellitus (literature review)




type 2 diabetes mellitus, obesity, cancer risk


The increased risk of cancer in patients with type 2 diabetes mellitus substantiates the relevance of scientific researches on the mechanisms of association of these diseases. It was found that pathogenetic factors of type 2 diabetes mellitus cause disorders at the level of signaling pathways that control the processes of intracellular metabolism and survival. Obesity significantly increases cancer risk. The procarcinogenic effect of obesity is due to a combination of metabolic and hormonal disorders. The role of hyperinsulinemia, hyperglycemia and cytokine imbalance as factors for dysmetabolic influence has been proved. Hyperinsulinemia causes mitogenic and anti-apoptotic effects. Hyperglycemia due to oxidative stress determines chromosomal aberrations and changes in regulatory gene expression. Proinflammatory cytokines promote the formation of chronic inflammation and microenvironment conducive for the survival of malignant cells. Dysmetabolic changes, in turn, cause hormonal disorders that promote carcinogenesis in hormone-dependent organs. Hyperinsulinemia leads to hyperoestrogenemia, and hyperleptinemia disrupts the synthesis of gonadotropic hormones, contributing to hyperplastic endometrial processes. Excessive concentrations of interleukin-6 and hyperleptinemia stimulate local oestrogen synthesis in adipose tissue of the mammary gland, activating proliferative processes. Hypoadiponectinemia promotes suppression of the immune response and indicates a potentially unfavourable course of cancer di­seases. Understanding the mutually confounding pro-oncogenic effects of metabolic and hormonal disorders in obesity should emphasize the importance of body weight correction in patients with diabetes mellitus, as well as in individuals without carbohydrate metabolism disorders, from the standpoint of preventing not only cardiovascular diseases, but also cancer. The choice of antidiabetic drugs should take into account the need for correction of the body weight of patients, and ineffective conservative treatment of obesity is a pretext for the use of bariatric surgery methods according to medical indications.


Download data is not yet available.


International Diabetes Federation (IDF). IDF Diabetes Atlas. 9th ed. Brussels; 2019. 176 p.

Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history?. Clin Diabetes Endocrinol. 2017;3:1. doi:10.1186/s40842-016-0039-3.

Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. doi:10.1002/ijc.29210.

World Health Organization (WHO). Global Health Observatory (GHO) data: The data repository. Available from:

National Cancer Institute of Ukraine. Fedorenko ZP, Michailovich YY, Goulak LO, et al., authors; Kolesnik OO, editor. Cancer in Ukraine 2017-2018: incidence, mortality, rates for activity of oncological service: Bulletin of national cancer registry of Ukraine 20. Kyiv; 2019. 82 p.

Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. doi:10.1136/bmj.g7607.

Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko MD. Biochemical mechanisms connecting diabetes and cancer. Effects of metformine. Endokrynologia 2018;23(2):167-179. (in Ukrainian).

Vatseba TS. Activation of intracellular enzyme systems under the influence of pathogenetic factors of oncogenesis in patients with type 2 diabetes mellitus. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(3):217–222. doi:10.22141/2224-0721.15.3.2019.172107. (in Ukrainian).

World Health Organization (WHO). Obesity and overweight: Key facts. Available from: Accessed: March 3, 2020.

Nikitin YuP, Openko TG, Simonova GI. Metabolic syndrome and its components as possible modified cancer risk factors (literature review). Siberian Journal of Oncology. 2012;2(50):68–72. (in Russian).

Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674–1685. doi:10.2337/dc10-0666.

Alderete TL, Byrd-Williams CE, Toledo-Corral CM, Conti DV, Weigensberg MJ, Goran MI. Relationships between IGF-1 and IGFBP-1 and adiposity in obese African-American and Latino adolescents. Obesity (Silver Spring). 2011;19(5):933–938. doi:10.1038/oby.2010.211.

Giovannucci E, Harlan DM, Archer MC, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207–221. doi:10.3322/caac.20078.

Sanli T, Steinberg GR, Singh G, Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 2014;15(2):156–169. doi:10.4161/cbt.26726.

Marín-Aguilar F, Pavillard LE, Giampieri F, Bullón P, Cordero MD. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds. Int J Mol Sci. 2017;18(2):288. Published 2017 Jan 29. doi:10.3390/ijms18020288.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013.

Misnikova IV. Diabetes mellitus and cancer. RMJ. 2016;24(20):1346–1350. (in Russian).

García-Jiménez C, Gutiérrez-Salmerón M, Chocarro-Calvo A, García-Martinez JM, Castaño A, De la Vieja A. From obesity to diabetes and cancer: epidemiological links and role of therapies. Br J Cancer. 2016;114(7):716–722. doi:10.1038/bjc.2016.37.

Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296(5573):1634–1635. doi:10.1126/science.1071924.

Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185. doi:10.1155/2014/149185.

Gnacińska M, Małgorzewicz S, Guzek M, Lysiak-Szydłowska W, Sworczak K. Adipose tissue activity in relation to overweight or obesity. Endokrynol Pol. 2010;61(2):160–168.

Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–18. doi:10.1111/j.1467-789X.2009.00623.x.

Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–1013. doi:10.2337/db06-1656.

Eder K, Baffy N, Falus A, Fulop AK. The major inflammatory mediator interleukin-6 and obesity. Inflamm Res. 2009;58(11):727–736. doi:10.1007/s00011-009-0060-4.

Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–2512. doi:10.1016/j.ejca.2005.08.016.

Chen WC, Chen MF, Lin PY. Significance of DNMT3b in oral cancer. PLoS One. 2014;9(3):e89956. doi:10.1371/journal.pone.0089956.

Zak KP, Tronko MD, Popova VV, Butenko AK. Sakharnyi diabet. Immunitet. Tsitokiny: monografiia [Diabetes mellitus. Immunity. Cytokines: monograph]. Kyiv: Knyga pljus; 2015. 488 p. (in Russian).

Kurzrock R, Voorhees PM, Casper C, et al. A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin Cancer Res. 2013;19(13):3659–3670. doi:10.1158/1078-0432.CCR-12-3349.

Champ CE, Volek JS, Siglin J, Jin L, Simone NL. Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data?. Int J Breast Cancer. 2012;2012:506868. doi:10.1155/2012/506868.

Yom CK, Lee KM, Han W, et al. Leptin as a potential target for estrogen receptor-positive breast cancer. J Breast Cancer. 2013;16(2):138–145. doi:10.4048/jbc.2013.16.2.138.

Andò S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol. 2011;8(5):263–275. doi:10.1038/nrendo.2011.184.

Bartella V, Cascio S, Fiorio E, Auriemma A, Russo A, Surmacz E. Insulin-dependent leptin expression in breast cancer cells. Cancer Res. 2008;68(12):4919–4927. doi:10.1158/0008-5472.CAN-08-0642.

Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Breast Cancer: Role of Leptin. Front Oncol. 2019;9:596. doi:10.3389/fonc.2019.00596.

Cymbaluk A, Chudecka-Głaz A, Rzepka-Górska I. Leptin levels in serum depending on Body Mass Index in patients with endometrial hyperplasia and cancer. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):74–77. doi:10.1016/j.ejogrb.2006.08.012.

Hoda MR, Popken G. Mitogenic and anti-apoptotic actions of adipocyte-derived hormone leptin in prostate cancer cells. BJU Int. 2008;102(3):383–388. doi:10.1111/j.1464-410X.2008.07534.x.

Endo H, Hosono K, Uchiyama T, et al. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut. 2011;60(10):1363–1371. doi:10.1136/gut.2010.235754.

Kim HR. Obesity-Related Colorectal Cancer: The Role of Leptin. Ann Coloproctol. 2015;31(6):209–210. doi:10.3393/ac.2015.31.6.209.

Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14(2):189–206. doi:10.1677/ERC-06-0068.

Williams CJ, Mitsiades N, Sozopoulos E, et al. Adiponectin receptor expression is elevated in colorectal carcinomas but not in gastrointestinal stromal tumors. Endocr Relat Cancer. 2008;15(1):289–299. doi:10.1677/ERC-07-0197.

Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–233. doi:10.1038/nature09932.

Engelman JA, Chen L, Tan X, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14(12):1351–1356. doi:10.1038/nm.1890.

Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes. 2006;55(6):1840–1846. doi:10.2337/db05-1174.

Tan PH, Tyrrell HE, Gao L, et al. Adiponectin receptor signaling on dendritic cells blunts antitumor immunity. Cancer Res. 2014;74(20):5711–5722. doi:10.1158/0008-5472.CAN-13-1397.

Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–746. doi:10.1038/nrc3818.

Katira A, Tan PH. Evolving role of adiponectin in cancer-controversies and update. Cancer Biol Med. 2016;13(1):101–119. doi:10.28092/j.issn.2095-3941.2015.0092.

Chernyshova AL, Kolomiets LA, Yunusova NV, Kondakova IV, Bulanova AA, Shanshashvili EV. Pathogenetic foundation of metabolic syndrome correction in patients with endometrial hyperplasia and endometrial cancer. Russian Biotherapeutic Journal. 2013;12(1):3–10. (in Russian).

Vona-Davis L, Howard-McNatt M, Rose DP. Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev. 2007;8(5):395–408. doi:10.1111/j.1467-789X.2007.00396.x.

Parkin E, O'Reilly DA, Sherlock DJ, Manoharan P, Renehan AG. Excess adiposity and survival in patients with colorectal cancer: a systematic review. Obes Rev. 2014;15(5):434–451. doi:10.1111/obr.12140.

Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology. 2011;54(2):463–471. doi:10.1002/hep.24397.

Lavalette C, Trétarre B, Rebillard X, Lamy PJ, Cénée S, Menegaux F. Abdominal obesity and prostate cancer risk: epidemiological evidence from the EPICAP study. Oncotarget. 2018;9(77):34485–34494. doi:10.18632/oncotarget.26128.



How to Cite

Vatseba, T., Sokolova, L., & Pushkarev, V. (2021). The effect of obesity on the formation of cancer risk in patients with type 2 diabetes mellitus (literature review). INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 16(2), 161–167.



Literature Review

Most read articles by the same author(s)

1 2 > >>