Diabetes mellitus and atherosclerosis. The role of inflammatory processes in pathogenesis (literature review)


  • L.K. Sokolova State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Kyiv, Ukraine
  • V.M. Pushkarev State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Kyiv, Ukraine
  • V.V. Pushkarev State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Kyiv, Ukraine
  • O.I. Kovzun State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Kyiv, Ukraine
  • M.D. Tronko State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Kyiv, Ukraine




diabetes mellitus, atherosclerosis, inflammation, NF-κB, review


The review of the literature summarizes and analyzes the material on inflammatory processes accompanying cardiovascular complications in diabetes mellitus. The role of endothelial dysfunction is shown leading to an increase in the permeability of the endothelium, accumulation of lipoproteins in the vessel wall, their modification, formation and secretion of cell adhesion molecules, which in turn leads to involvement of monocytes and their differentiation into inflammatory macrophages. The role of scavenger receptors in the deposition of cholesterol and the formation of foam cells was noted. The mechanisms of the inflammatory process initiation and the formation of inflammasоmes are considered in detail. The scheme of transduction of proinflammatory signals in the cell and participation of the key factor NF-κB integrating all incoming information and controlling the transactivation of genes involved in inflammation are described. It is shown that inflammation is key process in the development of vascular diseases in diabetes mellitus, and the suppression of these processes inhibits the progression of the disease reducing arterial damage and contributing to their healing.


Download data is not yet available.


Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015 Aug 26;6(3):209-17. doi: 10.4331/wjbc.v6.i3.209.

Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017 Mar;14(3):133-144. doi: 10.1038/nrcardio.2016.185.

White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation – therapeutic opportunities and pharmacological challenges. Pharmacol Rev. 2013 Jan 8;65(1):47-89. doi: 10.1124/pr.111.005074.

Sokolova LK, Pushkarev VM, Pushkarev VV, Tronko MD. Diabetes and atherosclerosis. Cellular mechanisms of the pathogenesis (review). Endokrynologia. 2017;22(2):127-138.

Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158-173. doi: 10.1161/01.RES.0000255691.76142.4a.

Xiao L, Liu Y, Wang N. New paradigms in inflammatory signaling in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2014 Feb;306(3):H317-25. doi: 10.1152/ajpheart.00182.2013.

Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. How do macrophages sense modified low-density lipoproteins? Int J Cardiol. 2017 Mar 1;230:232-240. doi: 10.1016/j.ijcard.2016.12.164.

Tousoulis D, Kampoli AM, Papageorgiou N, et al. Pathophysiology of atherosclerosis: the role of inflammation. Curr Pharm Des. 2011;17(37):4089-4110. PMID: 22204371.

Dunn J, Simmons R, Thabet S, Jo H. The role of epigenetics in the endothelial cell shear stress response and atherosclerosis. Int J Biochem Cell Biol. 2015 Oct;67:167-76. doi: 10.1016/j.biocel.2015.05.001.

Brevetti G, Giugliano G, Brevetti L, Hiatt WR. Inflammation in peripheral artery disease. Circulation. 2010 Nov 2;122(18):1862-75. doi: 10.1161/CIRCULATIONAHA.109.918417.

Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag. 2015 Aug 28;11:525-32. doi: 10.2147/VHRM.S74697.

Soran H, Durrington PN. Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol. 2011 Aug;22(4):254-61. doi: 10.1097/MOL.0b013e328348a43f.

Carracedo J, Merino A, Briceño C, et al. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J. 2011 Apr;25(4):1314-22. doi: 10.1096/fj.10-173377.

Alique M, Luna C, Carracedo J, Ramírez R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res. 2015 Dec 3;59:29240. doi: 10.3402/fnr.v59.29240. eCollection 2015.

Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA. Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int J Mol Sci. 2014 Jul 21;15(7):12807-41. doi: 10.3390/ijms150712807.

Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clin Chim Acta. 2010 Dec 14;411(23-24):1875-82. doi: 10.1016/j.cca.2010.08.038.

Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids. 2007 Aug;77(2):67-77. doi: 10.1016/j.plefa.2007.08.001.

Delporte C, Boudjeltia KZ, Noyon C, et al. Impact of myeloperoxidase-LDL interactions on enzyme activity and subsequent posttranslational oxidative modifications of apoB-100. J Lipid Res. 2014 Apr;55(4):747-57. doi: 10.1194/jlr.M047449.

Fogelstrand P, Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis. 2012 Jan;22(1):1-7. doi: 10.1016/j.numecd.2011.09.007.

Yurdagul AJr, Green J, Albert P, McInnis MC, Mazar AP, Orr AW. α5β1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014 Jul;34(7):1362-73. doi: 10.1161/ATVBAHA.114.303863.

Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells. 2015 May 22;4(2):178-201. doi: 10.3390/cells4020178.

Prabhudas M, Bowdish D, Drickamer K, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014 Mar 1;192(5):1997-2006. doi: 10.4049/jimmunol.1490003.

Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013 Oct;13(10):709-21. doi: 10.1038/nri3520.

Manning-Tobin JJ, Moore KJ, Seimon TA, et al. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol. 2009 Jan;29(1):19-26. doi: 10.1161/ATVBAHA.108.176644.

Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int. 2016;9582430:1-13. doi: 10.1155/2016/9582430.

Li N, McLaren JE, Michael DR, Clement M, Fielding CA, Ramji DP. ERK is integral to the IFN-γ-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. J Immunol. 2010 Sep 1;185(5):3041-8. doi: 10.4049/jimmunol.1000993.

Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016 Jan;20(1):17-28. doi: 10.1111/jcmm.12689.

Radhika A, Sudhakaran PR. Upregulation of macrophage-specific functions by oxidized LDL: lysosomal degradation-dependent and -independent pathways. Mol Cell Biochem. 2013 Jan;372(1-2):181-90. doi: 10.1007/s11010-012-1459-8.

Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013 Aug;14(8):812-20. doi: 10.1038/ni.2639.

Cook-Mills JM, Deem TL. Active participation of endothelial cells in inflammation. J Leukoc Biol. 2005 Apr;77(4):487-95. doi: 10.1189/jlb.0904554.

Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007 Sep;7(9):678-89. doi: 10.1038/nri2156.

Rahman A, Fazal F. Blocking NF-kappaB: an inflammatory issue. Proc Am Thorac Soc. 2011 Nov;8(6):497-503. doi: 10.1513/pats.201101-009MW.

Pushkarev VM, Kovzun OI, Pushkarev VV, Guda BB, Tronko MD. Chronic inflammation and cancer. Role of nuclear factor NF-kB. J. NAMS Ukraine. 2015;21(3-4):287-298.

Silke J. The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol. 2011 Oct;23(5):620-6. doi: 10.1016/j.coi.2011.08.002.

Pushkarev VM, Sokolova LK, Kovzun OI, Pushkarev VV, Tronko MD. Involvement of nuclear factor NF-kB in the pathogenesis of type 1 diabetes. Endokrynologia. 2016;21(3):225-238. (in Ukrainian)

Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis. 2016 Dec;109(12):708-715. doi: 10.1016/j.acvd.2016.04.002.

Tobias PS, Curtiss LK. Toll-like receptors in atherosclerosis. Biochem Soc Trans. 2007 Dec;35(Pt 6):1453-5. doi: 10.1042/BST0351453.

Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141-65. doi: 10.1146/annurev.biochem.76.060305.151318.

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010 May;11(5):373-84. doi: 10.1038/ni.1863.

Pryshchep O, Ma-Krupa W, Younge BR, Goronzy JJ, Weyand CM. Vessel-specific Toll-like receptor profiles in human medium and large arteries. Circulation. 2008 Sep 16;118(12):1276-84. doi: 10.1161/CIRCULATIONAHA.108.789172.

Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J Lipid Res. 2009 Apr;50 Suppl:S340-5. doi: 10.1194/jlr.R800056-JLR200.

Su X, Ao L, Shi Y, Johnson TR, Fullerton DA, Meng X. Oxidized low density lipoprotein induces bone morphogenetic protein-2 in coronary artery endothelial cells via Toll-like receptors 2 and 4. J Biol Chem. 2011 Apr 8;286(14):12213-20. doi: 10.1074/jbc.M110.214619.

Seimon TA, Nadolski MJ, Liao X, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010 Nov 3;12(5):467-82. doi: 10.1016/j.cmet.2010.09.010.

Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010 Feb;11(2):155-61. doi: 10.1038/ni.1836.

Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008 Mar;28(3):285-7. doi: 10.1016/j.immuni.2008.02.005.

Schroder K, Tschopp J. The inflammasomes. Cell. 2010 Mar 19;140(6):821-32. doi: 10.1016/j.cell.2010.01.040.

47. Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol. 2011 Dec 1;187(11):6143-56. doi: 10.4049/jimmunol.1101284.

Xiang M, Shi X, Li Y,et al. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol. 2011 Nov 1;187(9):4809-17. doi: 10.4049/jimmunol.1102093.

Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011 Apr 29;145(3):341-55. doi: 10.1016/j.cell.2011.04.005.

Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014 Jun;14(6):392-404. doi: 10.1038/nri3671.

Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014 Sep 1;103(4):438-51. doi: 10.1093/cvr/cvu168.

Feil S, Fehrenbacher B, Lukowski R, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014 Sep 12;115(7):662-7. doi: 10.1161/CIRCRESAHA.

Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6Chi and Ly6Clo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation. 2008 Apr 1;117(13):1649-57. doi: 10.1161/CIRCULATIONAHA.107.745091.

Novoselov VV, Sazonova MA, Ivanova EA, Orekhov AN. Study of the activated macrophage transcriptome. Exp Mol Pathol. 2015 Dec;99(3):575-80. doi: 10.1016/j.yexmp.2015.09.014.

Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN. Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol. 2015 Apr 1;184:436-45. doi: 10.1016/j.ijcard.2015.03.055.

Murray P, Allen J, Biswas S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014 Jul 17;41(1):14-20. doi: 10.1016/j.immuni.2014.06.008.

Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflugers Arch. 2017 Apr;469(3-4):485-499. doi: 10.1007/s00424-017-1941-y.

Boyle JJ, Harrington HA, Piper E, et al. Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol. 2009 Mar;174(3):1097-108. doi: 10.2353/ajpath.2009.080431.

Boyle JJ, Johns M, Kampfer T, et al. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res. 2012 Jan 6;110(1):20-33. doi: 10.1161/CIRCRESAHA.111.247577.

Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1𝛽by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun. 2012 Aug 24;425(2):121-6. doi: 10.1016/j.bbrc.2012.07.011.

Rajamaki K, Lappalainen J, Oorni K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010 Jul 23;5(7):e11765. doi: 10.1371/journal.pone.0011765.

Huang Z, Li W, Wang R, Zhang F, et al. 7-Ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa B activation in J774A.1 macrophages. Life Sci. 2010 Nov 20;87(19-22):651-7. doi: 10.1016/j.lfs.2010.09.028.

Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E145-54. doi: 10.1152/ajpendo.00490.2010.

Ishiyama J, Taguchi R, Yamamoto A, Murakami K. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis. 2010 Mar;209(1):118-24. doi: 10.1016/j.atherosclerosis.2009.09.004.

Sanson M, Distel E, Fisher EA. HDL induces the expression of the M2 macrophage markers arginase 1 and fizz-1 in a STAT6-dependent process. PLoS One. 2013 Aug 21;8(8):e74676. doi: 10.1371/journal.pone.0074676. eCollection 2013.

De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circ J. 2014;78(8):1775-1781. PMID: 24998279.

Kappus MS, Murphy AJ, Abramowicz S, et al. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol. 2014 Feb;34(2):279-84. doi: 10.1161/ATVBAHA.113.302781.

Liao X, Sluimer JC, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012 Apr 4;15(4):545-53. doi: 10.1016/j.cmet.2012.01.022.

Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016 May 27;118(11):1808-29. doi: 10.1161/CIRCRESAHA.116.306923.

Fadini GP, Menegazzo L, Scattolini V, Gintoli M, Albiero M, Avogaro A. A perspective on NETosis in diabetes and cardiometabolic disorders. Nutr Metab Cardiovasc Dis. 2016 Jan;26(1):1-8. doi: 10.1016/j.numecd.2015.11.008.

Wong SL, Demers M, Martinod K,et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healin. Nat Med. 2015 Jul;21(7):815-9. doi: 10.1038/nm.3887.

Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013 Jan;62(1):194-204. doi: 10.2337/db12-0420.

Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015 Jul;21(7):677-87. doi: 10.1038/nm.3893.

Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013 May;14(5):454-60. doi: 10.1038/ni.2550.

Iyer SS, He Q, Janczy JR, Elliott EI, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 2013 Aug 22;39(2):311-323. doi: 10.1016/j.immuni.2013.08.001.

Im SS, Yousef L, Blaschitz C, et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011 May 4;13(5):540-9. doi: 10.1016/j.cmet.2011.04.001.

Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006 Apr;116(4):1071-80. doi: 10.1172/JCI23354.

Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011 May;31(5):969-79. doi: 10.1161/ATVBAHA.110.207415.

Kimura T, Tse K, Sette A, Ley K. Vaccination to modulate atherosclerosis. Autoimmunity. 2015 May;48(3):152-60. doi: 10.3109/08916934.2014.1003641.

Wolf D, Zirlik A, Ley K. Beyond vascular inflammation--recent advances in understanding atherosclerosis. Cell Mol Life Sci. 2015 Oct;72(20):3853-69. doi: 10.1007/s00018-015-1971-6.



How to Cite

Sokolova, L., Pushkarev, V., Pushkarev, V., Kovzun, O., & Tronko, M. (2021). Diabetes mellitus and atherosclerosis. The role of inflammatory processes in pathogenesis (literature review). INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 13(7), 486–498. https://doi.org/10.22141/2224-0721.13.7.2017.115747



Literature Review

Most read articles by the same author(s)

1 2 3 > >>