Immunophenotype of blood lymphocytes in patients with type 2 diabetes and normal body weight and obesity


  • O.V. Furmanova State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • A.V. Kulikovska State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • V.V. Popova State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • K.P. Zak State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • M.D. Tronko State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine



type 2 diabetes, obesity, immunity, lymphocyte immunophenotyping


Background. Determination of the blood lymphocyte immunophenotype is one of the key indicators of the immune function in a diseased person. However, the studies of the lymphocyte immunophenotyping in patients with type 2 diabetes (T2D), with the most frequent complication of this disease — overweight/obesity, are rare and controversial. The purpose of study was to determine immunophenotype of blood lymphocytes (CD3+ T, CD4+ T, CD8+ T, CD20+ and CD56+ cells) in patients with newly diagnosed T2D and different body mass index (BMI). Materials and methods. There were examined 78 patients with newly diagnosed T2D and 40 normoglycemic individuals, who were divided into 4 subgroups, depending on the BMI. The blood lymphocyte immunophenotyping was carried out by the flow cytometry using a FACStar Plus laser cytofluorimeter and a panel of monoclonal antibodies to membrane antigens of lymphocytes. Results. The entire group of patients with T2D is characterized by a small but significant (p < 0.05) increase in the absolute number of CD4+ T cells compared to the group of normoglycemic individuals. When dividing the examined patients into 4 subgroups, depending on the BMI: 1) ≤ 25.5 kg/m2, 2) 25.9–29.9 kg/m2, 3) 30.0–34.9 kg/m2, 4) > 35.0 kg/m2, it was found that in subgroup 1, the absolute number of CD3+ T, CD4+ T, CD8+ T, CD20+ and CD56+ cells was close to those in normoglycemic individuals. Patients of subgroup 2 showed a significant increase in the absolute number of CD4+ T cells by 12.5 % (p < 0.05). In subgroup 3, there was an increase in the absolute number of CD4+ T cells by 29.2 % (p < 0.001). Patients of subgroup 4 with morbid obesity, especially women, had an increase in the absolute numbers of CD3+ T cells by 12.4 % (p < 0.01), CD4+ T cells — by 47.7 % (p < 0.001) and CD8+ T cells — by 26.2 % (p < 0.001). A similar increase in the absolute number of CD4+ T cells, depending on BMI, was also noted in normoglycemic individuals, but was less pronounced. Conclusions. Patients with newly diagnosed T2D are characterized by an increased content of T-lymphocyte subpopulations in peripheral blood, especially CD3+T and CD4+T cells, which is most pronounced with a concomitant obesity.


Download data is not yet available.


Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016 Apr;59(4):679-82. doi:10.1007/s00125-016-3873-z.

Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017 Jul 19;18(8):826-831. doi:10.1038/ni.3790.

Pearson ER. Type 2 diabetes: a multifaceted disease. Diabetologia. 2019 Jul;62(7):1107-1112. doi:10.1007/s00125-019-4909-y.

Zak KP, Tron'ko ND, Popova VV, Butenko AK. Sakharnyi diabet. Immunitet. Tsitokiny [Diabetes mellitus. Immunity. Cytokines]. Kyiv: Kniga plyus; 2015. 488 p. (in Ukrainian).

Shitole SG, Biggs ML, Reiner AP, et al. Soluble CD14 and CD14 Variants, Other Inflammatory Markers, and Glucose Dysregulation in Older Adults: The Cardiovascular Health Study. Diabetes Care. 2019 Nov;42(11):2075-2082. doi:10.2337/dc19-0723.

Tron'ko MD, Zak KP. Current advances in clinical pathophysiology in the study of the pathogenesis of type 1 and type 2 diabetes mellitus in humans. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(6):422-434. doi:10.22141/2224-0721.15.6.2019.185403. (in Russian).

Furmanova OV, Zak KP, Popova VV, Tronko MD. Blood leukocyte composition and neutrophil to lymphocyte ratio in patients with newly diagnosed type 2 diabetes mellitus depending on the degree of overweight/obesity. Mìžnarodnij endokrinologìčnij žurnal. 2020;16(7): 526-533. doi:10.22141/2224-0721.16.7.2020.219006. (in Russian).

Paul UYe. Immunologiia. Tom 1 [Immunology. Tom 1]. Moskva: Mir; 1987-1988. 472 p. (in Russian).

Meyl D, Brostoff Dzh, Rot DB, Roytt A. Immunologiia [Immunology]. Moskva: Logosfers; 2007. 555 p. (in Russian).

O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010 Feb 26;327(5969):1098-102. doi:10.1126/science.1178334.

Zak KP, Popova VV. The role of IL-17 in the pathogenesis of type 1 and type 2 diabetes mellitus in humans. Mìžnarodnij endokrinologìčnij žurnal. 2018;14(5):514-521. doi:10.22141/2224-0721.14.5.2018.142690. (in Russian).

Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018 May;101:287-292. doi:10.1016/j.biopha.2018.02.103.

Lee YH, Kim SR, Han DH, et al. Senescent T Cells Predict the Development of Hyperglycemia in Humans. Diabetes. 2019 Jan;68(1):156-162. doi:10.2337/db17-1218.

Yi H-S, Lee Y, Ku B. Metabolic reprogramming of CD8+ T cells regulates systemic glucose metabolism. Diabetologia. 2018;61(Suppl 1):S3. doi:10.1007/s00125-018-4693-0.

Zak KP, Kindzel'skiy LP, Butenko AK. Large granular lymphocytes in pathology. Kyiv: Naukova Dumka, 1992. 164 p. (in Ukrainian).

Spooren PF, Vermes I, Soons JW. Similar alterations of lymphocyte subpopulations in type I and type II diabetes. Neth J Med. 1993 Jun;42(5-6):163-7.

Chang FY, Shaio MF. Decreased cell-mediated immunity in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1995 May;28(2):137-46. doi:10.1016/0168-8227(95)00168-8.

Dworacka M, Winiarska H, Borowska M, Abramczyk M, Bobkiewicz-Kozlowska T, Dworacki G. Pro-atherogenic alterations in T-lymphocyte subpopulations related to acute hyperglycaemia in type 2 diabetic patients. Circ J. 2007 Jun;71(6):962-7. doi:10.1253/circj.71.962.

Viisanen T, Ihantola EL, Näntö-Salonen K, et al. Circulating CXCR5+PD-1+ICOS+ Follicular T Helper Cells Are Increased Close to the Diagnosis of Type 1 Diabetes in Children With Multiple Autoantibodies. Diabetes. 2017 Feb;66(2):437-447. doi:10.2337/db16-0714.

Heninger AK, Eugster A, Kuehn D, et al. A divergent population of autoantigen-responsive CD4+ T cells in infants prior to β cell autoimmunity. Sci Transl Med. 2017 Feb 22;9(378):eaaf8848. doi:10.1126/scitranslmed.aaf8848.

Endesfelder D, zu Castell W, Ardissone A, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014 Jun;63(6):2006-14. doi:10.2337/db13-1676.

Bouter KP, Meyling FH, Hoekstra JB, Masurel N, Erkelens DW, Diepersloot RJ. Influence of blood glucose levels on peripheral lymphocytes in patients with diabetes mellitus. Diabetes Res. 1992 Feb;19(2):77-80.

Tsujimura T, Matsuo Y, Keyaki T, Sakurada K, Imanishi J. Correlations of sleep disturbance with the immune system in type 2 diabetes mellitus. Diabetes Res Clin Pract. 2009 Sep;85(3):286-92. doi:10.1016/j.diabres.2009.07.001.

Czech A, Piatkiewicz P, Nowaczyk M, Marek J. Increased levels of proinflammatory cytokines are associated with impaired immune activity of Natural Killer (NK) cells of prediabetic subjects (PS). Diabetologia. 2009;52(Suppl 1):S248. doi:10.1007/s00125-009-1445-1.

Сhe TT, Ren Y, Liu SF. Expression of circulating CD4+CD25+ FOXP3+ regulatory T cells in obese patients. Diabetologia. 2013;56(Suppl 1):S231. doi:10.1007/s00125-013-3012-z.

Sayenko YYaA, Zak KP, Popova VV, Semionova TA. Leukocyte Composition and Immunophenotype of the Blood Lymphocytes in Women with Type 2 Diabetes Mellitus and Obesity. Mìžnarodnij endokrinologìčnij žurnal. 2016;5:13-19. doi:10.22141/2224-0721.5.77.2016.78748. (in Russian).

Womack J, Tien PC, Feldman J, et al. Obesity and immune cell counts in women. Metabolism. 2007 Jul;56(7):998-1004. doi:10.1016/j.metabol.2007.03.008.

Tron'ko ND, Zak KP. Obesity and diabetes mellitus. Lik Sprava. 2013 Dec;(8):3-21. (in Russian).

Harwood HJ Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012 Jul;63(1):57-75. doi:10.1016/j.neuropharm.2011.12.010.

Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019 Sep;15(9):507-524. doi:10.1038/s41574-019-0230-6.

Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016 May;59(5):879-94. doi:10.1007/s00125-016-3904-9.

Fabbrini E, Cella M, McCartney SA, et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013 Aug;145(2):366-74.e1-3. doi:10.1053/j.gastro.2013.04.010.

Kim JY, Bacha F, Tfayli H, Michaliszyn SF, Yousuf S, Arslanian S. Adipose Tissue Insulin Resistance in Youth on the Spectrum From Normal Weight to Obese and From Normal Glucose Tolerance to Impaired Glucose Tolerance to Type 2 Diabetes. Diabetes Care. 2019 Feb;42(2):265-272. doi:10.2337/dc18-1178.

Bommer C, Heesemann E, Sagalova V, et al. The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017 Jun;5(6):423-430. doi:10.1016/S2213-8587(17)30097-9.

Lichiardopol R, Popescu LD, Ionescu I, Dovan D, Pencea C. Abdominal obesity in type 1 and type 2 diabetes patients. Diabetologia. 2008;51(Suppl 1):S335. doi:10.1007/s00125-008-1117-6.

Kumar S, Wilson B, Watson L, Alsop J. Obesity is associated with poorer clinical outcomes following insulin initiation for patients with type 2 diabetes. Diabetologia. 2009;52(Suppl 1):S132-S133. doi:10.1007/s00125-009-1445-1.

Nolan JJ, Færch K. Estimating insulin sensitivity and beta cell function: perspectives from the modern pandemics of obesity and type 2 diabetes. Diabetologia. 2012 Nov;55(11):2863-7. doi:10.1007/s00125-012-2684-0.

Global BMI Mortality Collaboration; Di Angelantonio E, Bhupathiraju ShN, Wormser D, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016 Aug 20;388(10046):776-86. doi:10.1016/S0140-6736(16)30175-1.

O'Rourke RW, Kay T, Scholz MH, et al. Alterations in T-cell subset frequency in peripheral blood in obesity. Obes Surg. 2005 Nov-Dec;15(10):1463-8. doi:10.1381/096089205774859308.

Al-Sufyani AA, Mahassni SH. Obesity and immune cells in Saudi females. Innate Immun. 2011 Oct;17(5):439-50. doi:10.1177/1753425910372536.

van der Weerd K, Dik WA, Schrijver B, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes. 2012 Feb;61(2):401-8. doi:10.2337/db11-1065.

International Diabetes Federation (IDF). IDF Diabetes Atlas, 8th ed. Brussels, Belgium: International Diabetes Federation; 2017. 150 p.

Muntner P, Shimbo D, Carey RM, et al. Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension. 2019 May;73(5):e35-e66. doi:10.1161/HYP.0000000000000087.

Afanas'eva VV, Butenko AK, Zak KP. Electron microscopy and ultracytochemistry of lymphocytes containing Gall bodies in the blood of patients with diabetes mellitus, Hodgkin disease and clean-up workers of the Chernobyl Atomic Electric Plant accident. Tsitol Genet. 2004 May-Jun;38(3):66-71. (in Russian).

Zak KP, Popova VV. Immune intervention in the treatment of diabetes mellitus (analytical review). Diabet Ozhyrinnja Metabolichnyj syndrom. 2015;6(4):31-44.

Wang X, Bao W, Liu J, et al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2013 Jan;36(1):166-75. doi:10.2337/dc12-0702.

Nikolajczyk BS, Jagannathan-Bogdan M, Shin H, Gyurko R. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun. 2011 Jun;12(4):239-50. doi:10.1038/gene.2011.14.

Zak KP, Mankovsky BM, Melnichenko SV, et al. Immunity in patients w ith type 2 diabetes mellitus in complex w ith concomitant metabolic syndrome/obesity. Communication 2. Role of adipocytokines (interleukin-6, tumor necrosis factor alpha, leptin and adiponectin). Endokrynologia. 2013;18(2):26-32. (in Russian).

Dalmas E, Venteclef N, Caer C, et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014 Jun;63(6):1966-77. doi:10.2337/db13-1511.

Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595-607. doi:10.2337/diab.37.12.1595.

Reaven GM. The metabolic syndrome: is this diagnosis necessary? Am J Clin Nutr. 2006 Jun;83(6):1237-47. doi:10.1093/ajcn/83.6.1237.

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 Dec 14;444(7121):860-7. doi:10.1038/nature05485.

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0.

McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020 Jun;19(6):102537. doi:10.1016/j.autrev.2020.102537.

Gianchandani R, Esfandiari NH, Ang L, et al. Managing Hyperglycemia in the COVID-19 Inflammatory Storm. Diabetes. 2020 Oct;69(10):2048-2053. doi:10.2337/dbi20-0022.

Komissarenko SV. Scientists’ pursuit for SARS-COV-2 coronavirus: strategies against pandemic. Ukr Biochem J. 2020;92(6):5-52. doi:10.15407/ubj92.06.005.

Ugwueze CV, Ezeokpo BC, Nnolim BI, Agim EA, Anikpo NC, Onyekachi KE. COVID-19 and Diabetes Mellitus: The link and clinical implications. Dubai Diabetes Endocrinol J. 2020;26(2):69-77. doi:10.1159/000511354.

Crouse A, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin Use Is Associated With Reduced Mortality In A Diverse Population With Covid-19 And Diabetes. medRxiv. 2020 Jul 31:2020.07.29.20164020. doi:10.1101/2020.07.29.20164020.

Xu X, Shen M, Zhao R, et al. Follicular regulatory T cells are associated with β-cell autoimmunity and the development of type 1 diabetes. J Clin Endocrinol Metab. 2019 May 16:jc.2019-00093. doi:10.1210/jc.2019-00093.



How to Cite

Furmanova, O., Kulikovska, A., Popova, V., Zak, K., & Tronko, M. (2021). Immunophenotype of blood lymphocytes in patients with type 2 diabetes and normal body weight and obesity. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 17(2), 108–115.



Original Researches

Most read articles by the same author(s)

1 2 3 > >>