Contemporary environmental pollutants and their negative effects on the thyroid gland

Authors

  • O.I. Voloshyn MD, PhD, Professor at the Department of propedeutics of internal diseases and infectious diseases, Bukovinian State Medical University, Chernivtsi, Ukraine
  • I.V. Prysiazhniuk PhD, Assistant at the Department of propedeutics of internal diseases and infectious diseases, Bukovinian State Medical University, Chernivtsi, Ukraine
  • L.O. Voloshyna PhD, Associate Professor at the Department of propedeutics of internal diseases and infectious diseases, Bukovinian State Medical University, Chernivtsi, Ukraine
  • I.V. Pankiv MD, PhD, Associate Professor at the Department of clinical immunology, allergology and endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine http://orcid.org/0000-0001-5576-636X

DOI:

https://doi.org/10.22141/2224-0721.15.7.2019.186060

Keywords:

environmental pollutants, thyroid gland, environmental damage

Abstract

In the context of the global growth of thyroid di­seases and the need to find the causes of this tendency, the article provides information about the most common chemical environmental pollutants and their negative impact on the function and structure of the thyroid gland, possible mechanisms for such action. Own studies on thyroid lesions in patients with osteoarthritis who have lived or worked in areas of ecological distress were also presented. Attention is drawn to the priority of such studies in the light of trends towards progressive environmental degradation.

Downloads

Download data is not yet available.

References

Pankіv VI. Praktychna tyreoi'dologija [Practical thyroidology]. Donetsk: Publishing House Zaslavsky; 2011. 224 p.

Tronko MD, Kovalenko AYe, Tarashchenko YuM, Ostafiychuk MV. Thyroid nodules in the population of Ukraine, protocol of diagnosis and treatment after the Chernobyl accident (literature review and own data). Mìžnarodnij endokrinologìčnij žurnal. 2018;14(7):677-83. doi: 10.22141/2224-0721.14.7.2018.148775. (in Ukrainian).

Grünwald F, Derwahl K-M. Diagnostik und Therapie von Schilddrüsenerkrankungen: Ein Leitfaden für Klinik und Praxis. Berlin: Lehmannsmedia; 2014. 133 p.

Calsolaro V, Pasqualett G, Niccolai F, Caraccio N, Monzani F. Thyroid Disrupting Chemicals. Int J Mol Sci. 2017 Dec 1;18(12). pii: E2583. doi: 10.3390/ijms18122583.

Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev. 2009 Jun;30(4):293-342. doi: 10.1210/er.2009-0002.

Zoeller RT, Brown TR, Doan LL, et al. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology. 2012 Sep;153(9):4097-110. doi: 10.1210/en.2012-1422.

Vandenberg LN, Colborn T, Hayes TB, et al. Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocr Rev. 2012 Jun;33(3):378-455. doi: 10.1210/er.2011-1050.

Duntas LH. Chemical contamination and the thyroid. Endocrine. 2015 Feb;48(1):53-64. doi: 10.1007/s12020-014-0442-4.

European Commission. Endocrine Disruptors: Major Step Towards Protecting Citizens and Environment; European Commission: Brussels, Belgium, 2017. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_17_1906

Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012 May 22;355(2):240-8. doi: 10.1016/j.mce.2011.09.005.

Gore AC, Chappell VA, Fenton SE, et al. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015 Dec;36(6):E1-E150. doi: 10.1210/er.2015-1010.

Soechitram SD, Berghuis SA, Visser TJ, Sauer PJ. Polychlorinated biphenyl exposure and deiodinase activity in young infants. Sci Total Environ. 2017 Jan 1;574:1117-1124. doi: 10.1016/j.scitotenv.2016.09.098.

Abdelouahab N, Langlois MF, Lavoie L, Corbin F, Pasquier JC, Takser L. Maternal and cord-blood thyroid hormone levels and exposure to polybrominated diphenyle and polychlorinated biphenyls during early pregnancy. Am J Epidemiol. 2013 Sep 1;178(5):701-13. doi: 10.1093/aje/kwt141.

Zheng J, He CT, Chen SJ, et al. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenylethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-wastere cycling workers. Environ Int. 2017 May;102:138-144. doi: 10.1016/j.envint.2017.02.009.

Lee E, Kim TH, Choi JS, et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenylether BDE-209. J Toxicol Sci. 2010 Aug;35(4):535-45. doi: 10.2131/jts.35.535.

Julander A, Karlsson M, Hagström K, et al. Polybrominated diphenylethers – Plasma levels and thyroid status of workers at an electronic recycling facility. Int Arch Occup Environ Health. 2005 Aug;78(7):584-92. doi: 10.1007/s00420-005-0627-5.

Vuong AM, Webster GM, Romano ME, et al. Maternal Polybrominated Diphenyl Ether (PBDE) Exposure and Thyroid Hormones in Maternal and Cord Sera: The HOME Study, Cincinnati, USA. Environ Health Perspect. 2015 Oct;123(10):1079-85. doi: 10.1289/ehp.1408996.

Zheng MY, Li XH, Zhang Y, Yang YL, Wang WY, Tian Y. Partitioning of polybrominated biphenyl ethers from mother and fetus and potential health-related implications. Chemosphere. 2017 Mar;170:207-215. doi: 10.1016/j.chemosphere.2016.11.136.

Kronborg TM, Hansen JF, Rasmussen AK, et al. The flame retardant DE-71 (a mixture of polybrominated diphenyl ethers) inhibits human differentiated thyroid cell function in vitro. PLoS One. 2017 Jun 23;12(6):e0179858. doi: 10.1371/journal.pone.0179858.

Leung AM, Pearce EN, Braverman LE. Environmental perchlorate exposure: Potential adverse thyroid effects. Curr Opin Endocrinol Diabetes Obes. 2014 Oct;21(5):372-6. doi: 10.1097/MED.0000000000000090.

McMullen J, Ghassabian A, Kohn B, Trasande L. Identifying Subpopulations Vulnerable to the Thyroid-Blocking Effects of Perchlorate and Thiocyanate. J Clin Endocrinol Metab. 2017 Jul 1;102(7):2637-2645. doi: 10.1210/jc.2017-00046.

Suh M, Abraham L, Hixon JG, Proctor DM. The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations of the 2001–2002 and 2007–2008 National Health and Nutrition Examination Surveys. J Expo Sci Environ Epidemiol. 2014 Nov;24(6):579-87. doi: 10.1038/jes.2013.67.

Taylor PN, Okosieme OE, Murphy R, et al. Maternal perchlorate levels in women with borderline thyroid function during pregnancy and the cognitive development of their offspring: data from the Controlled Antenatal Thyroid Study. J Clin Endocrinol Metab. 2014 Nov;99(11):4291-8. doi: 10.1210/jc.2014-1901.

Meeker JD, Calafat AM, Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect. 2007 Jul;115(7):1029-34. doi: 10.1289/ehp.9852.

Boas M, Frederiksen H, Feldt-Rasmussen U, et al. Childhood exposure to phthalates: Associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect. 2010 Oct;118(10):1458-64. doi: 10.1289/ehp.0901331.

Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ Health Perspect. 2011 Oct;119(10):1396-402. doi: 10.1289/ehp.1103582.

Aung MT, Johns LE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: A repeated measures study. Environ Int. 2017 Jul;104:33-40. doi: 10.1016/j.envint.2017.04.001.

Andrianou XD, Gangler S, Piciu A, et al. Human Exposures to Bisphenol A, Bisphenol F and Chlorinated Bisphenol A Derivatives and Thyroid Function. PLoS One. 2016 Oct 26;11(10):e0155237. doi: 10.1371/journal.pone.0155237.

Zhou Z, Zhang J, Jiang F, Xie Y, Zhang X, Jiang L. Higher urinary bisphenol A concentration and excessive iodine intake are associated with nodular goiter and papillary thyroid carcinoma. Biosci Rep. 2017 Jul 27;37(4). pii: BSR20170678. doi: 10.1042/BSR20170678.

Wang N, Zhou Y, Fu C, et al. Influence of Bisphenol A on Thyroid Volume and Structure Independent of Iodine in School Children. PLoS One. 2015 Oct 23;10(10):e0141248. doi: 10.1371/journal.pone.0141248.

Freire C, Koifman RJ, Sarcinelli PN, Simoes-Rosa AC, Clapauch R, Koifman S. Long-term exposure to organochlorine pesticides and thyroid status in adults in a heavily contaminated area in Brazil. Environ Res. 2013 Nov;127:7-15. doi: 10.1016/j.envres.2013.09.001.

Agency for Toxic Substances and Disease Registry. Toxicological Profilefor DDT, DDE and DDD. Atlanta: Agency for Toxic Substances and Disease Registry; 20019. 486 p.

Yaglova NV, Yaglov, VV. Cytophysiological Changes in the Follicular Epithelium of the Thyroid Gland after Long-Term Exposure to Low Doses of Dichlorodiphenyltrichloroethane (DDT). Bull Exp Biol Med. 2017 Mar;162(5):699-702. doi: 10.1007/s10517-017-3691-4.

Freire C, Lopez-Espinosa MJ, Fernandez M, Molina-Molina JM, Prada R, Olea N. Prenatal exposure to organochlorine pesticides and TSH status in newborns from Southern Spain. Sci Total Environ. 2011 Aug 15;409(18):3281-7. doi: 10.1016/j.scitotenv.2011.05.037.

Lopez-Espinosa MJ, Vizcaino E, Murcia M, et al. Association between thyroid hormone levels and 4,4'-DDE concentrations in pregnant women (Valencia, Spain). Environ Res. 2009 May;109(4):479-85. doi: 10.1016/j.envres.2009.02.003.

Hernandez-Mariano JA, Torres-Sanchez L, Bassol-Mayagoitia S, et al. Effect of exposure top, p-DDE during the first half of pregnancy in the maternal thyroid profile of female residents in a Mexican floriculture area. Environ Res. 2017 Jul;156:597-604. doi: 10.1016/j.envres.2017.04.013.

Lee JE, Choi K. Perfluoroalkyl substances exposure and thyroid hormones in humans: Epidemiological observations and implications. Ann Pediatr Endocrinol Metab. 2017 Mar;22(1):6-14. doi: 10.6065/apem.2017.22.1.6.

Webster GM, Venners SA, Mattman A, Martin JW. Associations between Perfluoroalkylacids (PFASs) and maternal thyroid hormones in early pregnancy: A population-based cohort study. Environ. Res. 2014;133:338–347. doi: 10.1016/j.envres.2014.06.012.

Berg V, Nost TH, Hansen S, et al. Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach. Environ Int. 2015 Apr;77:63-9. doi: 10.1016/j.envint.2015.01.007.

Ballesteros V, Costa O, Iniguez C, Fletcher T, Ballester F, Lopez-Espinosa MJ. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. Environ Int. 2017 Feb;99:15-28. doi: 10.1016/j.envint.2016.10.015.

Voloshyna LO. Early diagnostic of hypothyroidism as factor of progressive of osteoarthritis and comorbidity, phytocorrection. Mìžnarodnij endokrinologìčnij žurnal. 2016;7:86-92. doi: 10.22141/2224-0721.7.79.2016.86424.

Published

2019-11-25

How to Cite

Voloshyn, O., Prysiazhniuk, I., Voloshyna, L., & Pankiv, I. (2019). Contemporary environmental pollutants and their negative effects on the thyroid gland. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 15(7), 560–566. https://doi.org/10.22141/2224-0721.15.7.2019.186060

Issue

Section

Literature Review

Most read articles by the same author(s)

1 2 3 4 5 > >>