Gut microbiota composition changes associated with obesity: new lights from metagenomic analysis

Authors

DOI:

https://doi.org/10.22141/2224-0721.16.8.2020.222886

Keywords:

Akkermansia muciniphila, Faecalibacterium prausnitzii, gut microbiota, insulin resistance, metagenomics, obesity, Roseburia, Ruminococcus, Prevotella copri, probiotics, review

Abstract

The worldwide prevalence of obesity more than doubled between 1980 and 2014. The most frequent cause, which leads to the obesity development, is an imbalance between energy intake and expenditure. In this complex process, genetic susceptibility, environmental and lifestyle factors are involved. The gut microbiota is a part of a complex network. Numerous studies have shown that the gut microbiota interacts with the host metabolism and plays an important role in various processes. The core gut microbial profile mainly embodies bacteria, belonging to the Gram-positive Firmicutes and the Gram-negative Bacteroidetes. An increase in gut Firmicutes/Bacteroidetes ratio is detected in obese patients and during high-fat diet consumption in human and animal stu­dies. Strains belonging to the genera Lactobacillus and Bifidobacterium are commonly used as probiotics and are most studied for the treatment and prevention of obesity-associated disorders. Moreover, several potential bacterial candidates, such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Prevotella copri, Roseburia or Ruminococcus, have been identified and novel mechanisms of action intervening their positive effects for obesity have been elucidated. Consequently, the gut microbiota is gaining significant research interest in relation to obesity and associated metabolic disorders in an attempt to better understand the etiology of obesity and potentially new methods of its prevention and treatment. However, traditional culture methods are very limited for identifying microbes. With the application of molecular biologic technologies, especially metagenomic next-generation sequen­cing, progress has been made in the study of the human intestinal microbiome.

Downloads

Download data is not yet available.

References

Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020 Jun 1;49(3):810-823. doi: 10.1093/ije/dyz273.

Lim YM, Song S, Song WO. Prevalence and Determinants of Overweight and Obesity in Children and Adolescents from Migrant and Seasonal Farmworker Families in the United States-A Systematic Review and Qualitative Assessment. Nutrients. 2017 Feb 24;9(3):188. doi: 10.3390/nu9030188.

WHO. Obesity. Available from: https://www.who.int/topics/obesity/en/. Accessed at June 13, 2020.

Jiang J, Ahn J, Huang WY, Hayes RB. Association of obesity with cardiovascular disease mortality in the PLCO trial. Prev Med. 2013 Jul;57(1):60-4. doi: 10.1016/j.ypmed.2013.04.014.

Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013 Sep;14(3):219-27. doi: 10.1007/s11154-013-9252-x.

Jung DH, Kim JY, Kim JK, Koh SB, Park JK, Ahn SV. Relative contribution of obesity and serum adiponectin to the development of hypertension. Diabetes Res Clin Pract. 2014 Jan;103(1):51-6. doi: 10.1016/j.diabres.2013.09.018.

Aludwan M, Kobyliak N, Abenavoli L, et al. Hepatic steatosis indices as predictors of vitamin D 3 deficiency in patients with NAFLD associated with type 2 diabetes. Clinical Diabetology. 2020;9(5):313-320. doi: 10.5603/DK.2020.0036.

Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 2019 Mar;92:82-97. doi: 10.1016/j.metabol.2018.11.014.

Eslami M, Sadrifar S, Karbalaei M, Keikha M, Kobyliak NM, Yousefi B. Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells. J Gastrointest Cancer. 2020 Sep;51(3):738-747. doi: 10.1007/s12029-019-00329-3.

Karimi K, Lindgren TH, Koch CA, Brodell RT. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev Endocr Metab Disord. 2016 Sep;17(3):389-403. doi: 10.1007/s11154-016-9393-9.

Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014 Dec 4;7:587-91. doi: 10.2147/DMSO.S67400.

American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):S14-S31. doi: 10.2337/dc20-S002.

Eslami M, Bahar A, Hemati M, et al. Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabet Med. 2020 Oct 6:e14415. doi: 10.1111/dme.14415.

Divella R, Mazzocca A, Daniele A, Sabbà C, Paradiso A. Obesity, Nonalcoholic Fatty Liver Disease and Adipocytokines Network in Promotion of Cancer. Int J Biol Sci. 2019 Jan 1;15(3):610-616. doi: 10.7150/ijbs.29599.

Kobyliak N, Falalyeyeva T, Tsyryuk O, et al. New insights on strain-specific impacts of probiotics on insulin resistance: evidence from animal study. J Diabetes Metab Disord. 2020 Feb 16;19(1):289-296. doi: 10.1007/s40200-020-00506-3.

Abenavoli L, Scarpellini E, Colica C, et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients. 2019 Nov 7;11(11):2690. doi: 10.3390/nu11112690.

NIH HMP Working Group, Peterson J, Garges S, Giovanni M, et al. The NIH Human Microbiome Project. Genome Res. 2009 Dec;19(12):2317-23. doi: 10.1101/gr.096651.109.

Qin J, Li R, Raes J, et al; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821.

Utzschneider KM, Kratz M, Damman CJ, Hullar M. Mechanisms Linking the Gut Microbiome and Glucose Metabolism. J Clin Endocrinol Metab. 2016 Apr;101(4):1445-54. doi: 10.1210/jc.2015-4251.

Sarwar R, Pierce N, Koppe S. Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab Syndr Obes. 2018 Sep 25;11:533-542. doi: 10.2147/DMSO.S146339.

Patell R, Dosi R, Joshi H, Sheth S, Shah P, Jasdanwala S. Non-Alcoholic Fatty Liver Disease (NAFLD) in Obesity. J Clin Diagn Res. 2014 Jan;8(1):62-6. doi: 10.7860/JCDR/2014/6691.3953.

Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr). 2020 Nov-Dec;48(6):771-788. doi: 10.1016/j.aller.2020.04.005.

Grigorescu I, Dumitrascu DL. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol (Buchar). 2016 Apr-Jun;12(2):206-214. doi: 10.4183/aeb.2016.206.

Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012 Sep 13;489(7415):242-9. doi: 10.1038/nature11552.

Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006 Jan 26;439(7075):484-9. doi: 10.1038/nature04330.

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9.

Belizário JE, Faintuch J, Garay-Malpartida M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators Inflamm. 2018 Dec 9;2018:2037838. doi: 10.1155/2018/2037838.

Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010 Nov;13(6):715-21. doi: 10.1097/MCO.0b013e32833eebe5.

Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013 Aug;145(2):396-406.e1-10. doi: 10.1053/j.gastro.2013.04.056.

Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. doi: 10.1038/ncomms2852.

Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15718-23. doi: 10.1073/pnas.0407076101.

Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10;308(5728):1635-8. doi: 10.1126/science.1110591.

Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017 Nov 25;5(1):153. doi: 10.1186/s40168-017-0373-4.

Pedersen R, Ingerslev HC, Sturek M, et al. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome. PLoS One. 2013;8(2):e56612. doi: 10.1371/journal.pone.0056612.

Hansen AK, Hansen CH, Krych L, Nielsen DS. Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol. 2014 Dec 21;20(47):17727-36. doi: 10.3748/wjg.v20.i47.17727.

Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol. 2017 Sep 22;8:1765. doi: 10.3389/fmicb.2017.01765.

Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020 Jul 14;12:60. doi: 10.1186/s13098-020-00570-y.

Brunner KT, Henneberg CJ, Wilechansky RM, Long MT. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr Obes Rep. 2019 Sep;8(3):220-228. doi: 10.1007/s13679-019-00345-1.

Cerdó T, García-Santos JA, G Bermúdez M, Campoy C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients. 2019 Mar 15;11(3):635. doi: 10.3390/nu11030635.

Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond). 2010 Oct;34(10):1531-7. doi: 10.1038/ijo.2010.50.

Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010 Feb;51(2):679-89. doi: 10.1002/hep.23280.

Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008 Nov;32(11):1720-4. doi: 10.1038/ijo.2008.155.

Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008 Mar;87(3):534-8. doi: 10.1093/ajcn/87.3.534.

Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017 Dec;31(6):637-642. doi: 10.1016/j.bpg.2017.10.001.

Macchione IG, Lopetuso LR, Ianiro G, et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci. 2019 Sep;23(18):8075-8083. doi: 10.26355/eurrev_201909_19024.

Lukovac S, Belzer C, Pellis L, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 2014 Aug 12;5(4):e01438-14. doi: 10.1128/mBio.01438-14.

Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol. 2020 Feb 21;11:219. doi: 10.3389/fmicb.2020.00219.

Wu F, Guo X, Zhang M, et al. An Akkermansia muciniphila subtype alleviates high-fat diet-induced metabolic disorders and inhibits the neurodegenerative process in mice. Anaerobe. 2020 Feb;61:102138. doi: 10.1016/j.anaerobe.2019.102138.

Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019 Jul;25(7):1096-1103. doi: 10.1038/s41591-019-0495-2.

Kim S, Lee Y, Kim Y, et al. Akkermansia muciniphila Prevents Fatty Liver Disease, Decreases Serum Triglycerides, and Maintains Gut Homeostasis. Appl Environ Microbiol. 2020 Mar 18;86(7):e03004-19. doi: 10.1128/AEM.03004-19.

Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007 Oct;20(4):593-621. doi: 10.1128/CMR.00008-07.

De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016 Jul 12;24(1):151-7. doi: 10.1016/j.cmet.2016.06.013.

Mithieux G. Gut Microbiota and Host Metabolism: What Relationship. Neuroendocrinology. 2018;106(4):352-356. doi: 10.1159/000484526.

Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015 May 15;308(10):G840-51. doi: 10.1152/ajpgi.00029.2015.

Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome Signatures Associated With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019 Oct;157(4):1109-1122. doi: 10.1053/j.gastro.2019.06.028.

Péan N, Le Lay A, Brial F, et al. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia. 2020 Jun;63(6):1223-1235. doi: 10.1007/s00125-020-05122-7.

Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016 Jul 21;535(7612):376-81. doi: 10.1038/nature18646.

Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014 Nov 6;159(4):789-99. doi: 10.1016/j.cell.2014.09.053.

Castaner O, Goday A, Park YM, et al. The Gut Microbiome Profile in Obesity: A Systematic Review. Int J Endocrinol. 2018 Mar 22;2018:4095789. doi: 10.1155/2018/4095789.

Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol. 2016 Dec;47 Suppl 1(Suppl 1):86-98. doi: 10.1016/j.bjm.2016.10.005.

Wang PX, Deng XR, Zhang CH, Yuan HJ. Gut microbiota and metabolic syndrome. Chin Med J (Engl). 2020 Apr 5;133(7):808-816. doi: 10.1097/CM9.0000000000000696.

Shivaji S. We are not alone: a case for the human microbiome in extra intestinal diseases. Gut Pathog. 2017 Mar 7;9:13. doi: 10.1186/s13099-017-0163-3.

Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010 Feb;103(3):335-8. doi: 10.1017/S0007114509992182.

Feng J, Tang H, Li M, et al. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Arch Microbiol. 2014 Jan;196(1):73-7. doi: 10.1007/s00203-013-0942-2.

Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger AG. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes. 2015;6(4):431-9. doi: 10.3920/BM2014.0104.

Hippe B, Remely M, Aumueller E, Pointner A, Magnet U, Haslberger AG. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef Microbes. 2016 Sep;7(4):511-7. doi: 10.3920/BM2015.0075.

Del Chierico F, Abbatini F, Russo A, et al. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Front Microbiol. 2018 Jun 5;9:1210. doi: 10.3389/fmicb.2018.01210.

Lin H, An Y, Tang H, Wang Y. Alterations of Bile Acids and Gut Microbiota in Obesity Induced by High Fat Diet in Rat Model. J Agric Food Chem. 2019 Apr 3;67(13):3624-3632. doi: 10.1021/acs.jafc.9b00249.

Nirmalkar K, Murugesan S, Pizano-Zárate ML, et al. Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients. 2018 Dec 19;10(12):2009. doi: 10.3390/nu10122009.

Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B. Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial. Nutrients. 2019 Nov 27;11(12):2888. doi: 10.3390/nu11122888.

Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B. Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial. Nutrients. 2019 Nov 27;11(12):2888. doi: 10.3390/nu11122888.

Tamanai-Shacoori Z, Smida I, Bousarghin L, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017 Feb;12:157-170. doi: 10.2217/fmb-2016-0130.

Downloads

Published

2020-12-27

How to Cite

Kobyliak, N., Abenavoli, L., Pavlenko, G., & Komisarenko, Y. (2020). Gut microbiota composition changes associated with obesity: new lights from metagenomic analysis. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 16(8), 654–661. https://doi.org/10.22141/2224-0721.16.8.2020.222886

Issue

Section

Literature Review

Most read articles by the same author(s)