Diabetic cardiomyopathy: treatment





diabetes mellitus, diabetic cardiomyopathy, treatment, review


This article presents a review of the scientific literature on some key aspects of the current state of the problem of diabetic cardiomyopathy treatment. Measures aimed at reducing insulin resistance, correction of hyperglycemia, dyslipoproteinemia, myocardial metabolism disorders, prevention and treatment of thrombosis, symptomatic therapy of concomitant diseases and syndromes of arterial hypertension, coronary heart disease, heart failure and arrhythmias should be at the forefront of the treatment for diabetic cardiomyopathy. In this direction it is necessary to carry out the following preventive and therapeutic measures: rational nutrition and physical activity; correction of obesity; limiting salt intake to 2–4 g/day; exclusion of smoking, alcohol consumption, products containing caffeine. In particular, the issues are analyzed related to the peculiarities of rational nutrition and physical activity, optimization of glycemic control (insulin and/or insulin secretagogues, glucagon-like peptide-1 analogues, sodium-glucose cotranspor­ter-2 inhibitors); correction of metabolic disorders in the myocar­dium (drugs that improve the energy status of cells — potential means of energy supply for the survival of ischemic myocardium), metabolic modulators (metabolic drugs — trimetazidine, perhexiline, ranolazine; L-carnitine); restriction of extracellular Ca2+ entry into cells (calcium channel blockers), the use of β-adrenergic receptor blockers; modulation of oxidative stress (alpha-lipoic acid, benfotiamine); administration of long-chain ω-3 polyunsaturated fatty acids; sulforaphane, coenzyme Q10; magnesium. Also, promising ways in the treatment of diabetic cardiomyopathy (mimetic peptides for restoring L-type Ca2+ channels; noncoding microRNAs and long noncoding RNAs) are considered.


Download data is not yet available.


Leon BM, Maddox TM. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015 Oct 10;6(13):1246-58. doi: 10.4239/wjd.v6.i13.1246.

Serhiyenko V, Serhiyenko A. Diabetic Cardiac Autonomic Neuropathy. In: Rodriguez-Saldana J, eds. The Diabetes Textbook. Springer, Cham; 2019. pp. 225-250. doi: 10.1007/978-3-030-11815-0_53.

Bashier A, Bin Hussain A, Abdelgadir E, Alawadi F, Sabbour H, Chilton R. Consensus recommendations for management of patients with type 2 diabetes mellitus and cardiovascular diseases. Diabetol Metab Syndr. 2019 Sep 26;11:80. doi: 10.1186/s13098-019-0476-0.

Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart. 2019 Feb;105(4):337-345. doi: 10.1136/heartjnl-2016-310342.

Bonaccio M, Cerletti C, Iacoviello L, de Gaetano G. Mediterranean diet and low-grade subclinical inflammation: the Moli-sani study. Endocr Metab Immune Disord Drug Targets. 2015;15(1):18-24. doi: 10.2174/1871530314666141020112146.

Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and Other High-Income Countries. JAMA. 2018 Mar 13;319(10):1024-1039. doi: 10.1001/jama.2018.1150.

Powers WJ, Rabinstein AA, Ackerson T, et al; American Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018 Mar;49(3):e46-e110. doi: 10.1161/STR.0000000000000158.

Srinivasan AR, Niranjan G, Kuzhandai Velu V, Parmar P, Anish A. Status of serum magnesium in type 2 diabetes mellitus with particular reference to serum triacylglycerol levels. Diabetes Metab Syndr. 2012 Oct-Dec;6(4):187-9. doi: 10.1016/j.dsx.2012.09.001.

Zhao B, Zeng L, Zhao J, Wu Q, Dong Y, Zou F, Gan L, Wei Y, Zhang W. Association of magnesium intake with type 2 diabetes and total stroke: an updated systematic review and meta-analysis. BMJ Open. 2020 Mar 19;10(3):e032240. doi: 10.1136/bmjopen-2019-032240.

Gröber U, Schmidt J, Kisters K. Magnesium in Prevention and Therapy. Nutrients. 2015 Sep 23;7(9):8199-226. doi: 10.3390/nu7095388.

Fang X, Wang K, Han D, et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med. 2016 Dec 8;14(1):210. doi: 10.1186/s12916-016-0742-z.

American Diabetes Association. 5. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018 Jan;41(Suppl 1):S51-S54. doi: 10.2337/dc18-S005.

Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015 Nov;3(11):866-75. doi: 10.1016/S2213-8587(15)00291-0.

Maruthappu M, Sood H, Keogh B. Radically upgrading diabetes prevention in England. Lancet Diabetes Endocrinol. 2015 May;3(5):312-3. doi: 10.1016/S2213-8587(15)00079-0.

Mann JI, De Leeuw I, Hermansen K, et al; Diabetes and Nutrition Study Group (DNSG) of the European Association. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus. Nutr Metab Cardiovasc Dis. 2004 Dec;14(6):373-94. doi: 10.1016/s0939-4753(04)80028-0.

Derosa G, Limas CP, Macías PC, Estrella A, Maffioli P. Dietary and nutraceutical approach to type 2 diabetes. Arch Med Sci. 2014 May 12;10(2):336-44. doi: 10.5114/aoms.2014.42587.

Calles-Escandón J, Lovato LC, Simons-Morton DG, et al. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care. 2010 Apr;33(4):721-7. doi: 10.2337/dc09-1471.

Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 2011 Sep 13;7(10):573-83. doi: 10.1038/nrneurol.2011.137.

Serhiyenko V.A, Serhiyenko A.A. Diabetic cardiovascular autonomic neuropathy. Lviv: Danylo Halytsky Lviv National Medical University, 2016. 264 p. (in Ukrainian).

Tandon N, Ali MK, Narayan KM. Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes. Am J Cardiovasc Drugs. 2012 Feb 1;12(1):7-22. doi: 10.2165/11594650-000000000-00000.

Marso SP, Daniels GH, Brown-Frandsen K, et al; LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016 Jul 28;375(4):311-22. doi: 10.1056/NEJMoa1603827.

Zinman B, Wanner C, Lachin JM, et al; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117-28. doi: 10.1056/NEJMoa1504720.

Sorokina AG, Orlova YaA. A modern view on the mechanisms of diabetic cardiomyopathy development and the its modification options. Russ J Cardiol. 2019;24(11):142-7. doi: 10.15829/1560-4071-2019-11-142-147. (in Russian).

Holman RR, Bethel MA, Mentz RJ, et al; EXSCEL Study Group. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017 Sep 28;377(13):1228-1239. doi: 10.1056/NEJMoa1612917.

Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018 Jan 4;17(1):6. doi: 10.1186/s12933-017-0658-8.

Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res. 2017;2017:1310265. doi: 10.1155/2017/1310265.

Levelt E, Gulsin G, Neubauer S, McCann GP. MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol. 2018 Apr;178(4):R127-R139. doi: 10.1530/EJE-17-0724.

Zhang L, Ding WY, Wang ZH, et al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med. 2016 Apr 27;14(1):109. doi: 10.1186/s12967-016-0849-1.

Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014 Jun;142(3):375-415. doi: 10.1016/j.pharmthera.2014.01.003.

Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur J Pharmacol. 2011 May 11;658(2-3):277-83. doi: 10.1016/j.ejphar.2011.02.019.

Lee SJ, Jeong SJ, Lee YC, et al. Effects of High-Dose α-Lipoic Acid on Heart Rate Variability of Type 2 Diabetes Mellitus Patients with Cardiac Autonomic Neuropathy in Korea. Diabetes Metab J. 2017 Aug;41(4):275-283. doi: 10.4093/dmj.2017.41.4.275.

Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997 Mar;20(3):369-73. doi: 10.2337/diacare.20.3.369.

Rochette L, Ghibu S, Muresan A, Vergely C. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can J Physiol Pharmacol. 2015 Dec;93(12):1021-7. doi: 10.1139/cjpp-2014-0353.

Pácal L, Kuricová K, Kaňková K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J Diabetes. 2014 Jun 15;5(3):288-95. doi: 10.4239/wjd.v5.i3.288.

Stirban A, Pop A, Tschoepe D. A randomized, double-blind, crossover, placebo-controlled trial of 6 weeks benfotiamine treatment on postprandial vascular function and variables of autonomic nerve function in Type 2 diabetes. Diabet Med. 2013 Oct;30(10):1204-8. doi: 10.1111/dme.12240.

Raj V, Ojha S, Howarth FC, Belur PD, Subramanya SB. Therapeutic potential of benfotiamine and its molecular targets. Eur Rev Med Pharmacol Sci. 2018 May;22(10):3261-3273. doi: 10.26355/eurrev_201805_15089.

Bang HO, Dyerberg J. The bleeding tendency in Greenland Eskimos. Dan Med Bull. 1980 Sep;27(4):202-5.

Bradberry JC, Hilleman DE. Overview of omega-3 Fatty Acid therapies. P T. 2013 Nov;38(11):681-91.

Calo L, Martino A, Tota C. The antiarrhythmic effects of n-3 PUFAs. J Int Cardiol. 2013;170(2 Suppl 1): S21-S27. doi: 10.1016/j.ijcard.2013. 06.043.

Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015 Apr;1851(4):469-84. doi: 10.1016/j.bbalip.2014.08.010.

Koval SM, Yushko КО, Litvinova ON, et al. Relations of angiotensin-(1-7) with hemodynamic and cardiac structural and functional parameters in patients with hypertension and type 2 diabetes. Arterial hypertension. 2019;23(3):183-189. doi: 0.5603/AH.a2019.0012.

Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One. 2015 Oct 2;10(10):e0139565. doi: 10.1371/journal.pone.0139565.

Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol. 2018 Oct 30;9:1514. doi: 10.3389/fphys.2018.01514.

Velmurugan GV, Sundaresan NR, Gupta MP, White C. Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes. Cardiovasc Res. 2013 Oct 1;100(1):143-50. doi: 10.1093/cvr/cvt125.

Zhang Z, Wang S, Zhou S, et al. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 2014 Dec;77:42-52. doi: 10.1016/j.yjmcc.2014.09.022.

Huynh K, Kiriazis H, Du XJ, et al. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med. 2013 Jul;60:307-17. doi: 10.1016/j.freeradbiomed.2013.02.021.

Chew GT, Watts GF, Davis TM, et al. Hemodynamic effects of fenofibrate and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunction. Diabetes Care. 2008 Aug;31(8):1502-9. doi: 10.2337/dc08-0118.

Solati M, Ouspid E, Hosseini S, Soltani N, Keshavarz M, Dehghani M. Oral magnesium supplementation in type II diabetic patients. Med J Islam Repub Iran. 2014 Jul 15;28:67.

Liu M, Jeong EM, Liu H, et al. Magnesium supplementation improves diabetic mitochondrial and cardiac diastolic function. JCI Insight. 2019 Jan 10;4(1):e123182. doi: 10.1172/jci.insight.123182.

Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M, Guerrero-Romero F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res. 2016 Sep;111:272-282. doi: 10.1016/j.phrs.2016.06.019.

Hansen KF, Sakamoto K, Obrietan K. MicroRNAs: a potential interface between the circadian clock and human health. Genome Med. 2011 Feb 17;3(2):10. doi: 10.1186/gm224.

Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. J Cell Sci. 2011 Feb 1;124(Pt 3):311-20. doi: 10.1242/jcs.065771.

Pan Y, Liang H, Liu H, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014 Jan 1;192(1):437-46. doi: 10.4049/jimmunol.1301790.

Pischak VP, Riznychuk OM. Role on мicroRNA for diabetes mellitus development. Mìžnarodnij endokrinologìčnij žurnal. 2016;(73):36-38. doi: 10.22141/2224-0721.1.73.2016.71058. (In Ukrainian).

Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J. 2016 Feb 7;37(6):572-6. doi: 10.1093/eurheartj/ehv599.

Katare R, Caporali A, Zentilin L, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res. 2011 May 13;108(10):1238-51. doi: 10.1161/CIRCRESAHA.110.239111.

Raut SK, Singh GB, Rastogi B, et al. miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Mol Cell Biochem. 2016 Jun;417(1-2):191-203. doi: 10.1007/s11010-016-2729-7.

Feng B, Chen S, Gordon AD, Chakrabarti S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 2017 Apr;105:70-76. doi: 10.1016/j.yjmcc.2017.03.002.

Drozdovska SB, Polischuk AO. The participation of long noncoding RNAs in cardiac hypertrophy formation during longlasting physical exercise. Bulletin of problems biology and medicine. 2017;4(3):38-43. doi: 10.29254/2077–4214–2017–4–3–141–38-43. (in Ukrainian).

Raut SK, Khullar M. The Big Entity of New RNA World: Long Non-Coding RNAs in Microvascular Complications of Diabetes. Front Endocrinol (Lausanne). 2018 Jun 4;9:300. doi: 10.3389/fendo.2018.00300.



How to Cite

Serhiyenko, A., & Serhiyenko, V. (2021). Diabetic cardiomyopathy: treatment. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 16(8), 669–680. https://doi.org/10.22141/2224-0721.16.8.2020.222888



Literature Review

Most read articles by the same author(s)