Peculiarities of innate and adaptive immunity in the pathogenesis of thyroid autoimmune diseases. Immunocorrection (part 1)


  • T.F. Zakharchenko State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  • V.I. Kravchenko State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine



autoimmune thyroid diseases, NK cells, polymorphonuclear neutrophils, oxidative stress, Th17, Treg, Breg lymphocytes, cytokines, apoptosis, anti-thyroid antibodies, immunomodulatory effects, review


The review deals with the role of innate and adaptive, local and systemic immunity, cellular and humoral factors in the pathogenesis of autoimmune thyroid diseases (AITD). The importance of lymphoid infiltration of the thyroid gland, cytokines and autoantibodies, the role of thyroid hormones as modulators of the immune response, trace elements and dysregulation of apoptosis in the development of AITD is considered. Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) have been shown to be closely pathophysiologically related and have similar immune-mediated mechanisms, such as the production of autoantibodies to thyroid antigens and lymphocytic infiltration of the thyroid gland. Loss of immune tolerance to thyroid peroxidase, thyroglobulin and thyroid-stimula­ting hormone autoantigens is the basis for the development of AITD. Emphasis is placed on the role of cytokines, which are produced by both immune system cells and thyroid follicular cells. Imba­lance between Th17 lymphocytes and regulatory T cells (Treg) has a significant effect on the progression of AITD. An increase in Th17 lymphocytes may play a more important role in the pathogenesis of HT, whereas a decrease in Treg may be strongly involved in GD. Insufficiency of Treg that impairs immunological tolerance and causes abnormal cytokine production can lead to the initiation of apoptosis, which plays a role in the pathogenesis of GD and HT. Induction of apoptosis by HT leads to destruction of thyrocytes, while apoptosis in GD cause damage to thyroid infiltrating lymphocytes.


Download data is not yet available.


Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev. 2018 Feb;17(2):142-154. doi:10.1016/j.autrev.2017.11.018.

Ferlazzo G, Morandi B. Cross-Talks between Natural Killer Cells and Distinct Subsets of Dendritic Cells. Front Immunol. 2014 Apr 10;5:159. doi:10.3389/fimmu.2014.00159.

Jaillon S, Galdiero MR, Del Prete D, Cassatella MA, Garlanda C, Mantovani A. Neutrophils in innate and adaptive immunity. Semin Immunopathol. 2013 Jul;35(4):377-94. doi:10.1007/s00281-013-0374-8.

Csaba G. Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung. 2014 Sep;61(3):241-60. doi:10.1556/AMicr.61.2014.3.1.

Marinò M, Latrofa F, Menconi F, Chiovato L, Vitti P. Role of genetic and non-genetic factors in the etiology of Graves' disease. J Endocrinol Invest. 2015 Mar;38(3):283-94. doi:10.1007/s40618-014-0214-2.

Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y. Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J Autoimmun. 2015 Nov;64:82-90. doi:10.1016/j.jaut.2015.07.009.

Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015 Feb;14(2):174-80. doi:10.1016/j.autrev.2014.10.016.

Schleinitz N, Vély F, Harlé JR, Vivier E. Natural killer cells in human autoimmune diseases. Immunology. 2010 Dec;131(4):451-8. doi:10.1111/j.1365-2567.2010.03360.x.

Ben-Skowronek I, Szewczyk L, Kulik-Rechberger B, Korobowicz E. The differences in T and B cell subsets in thyroid of children with Graves' disease and Hashimoto's thyroiditis. World J Pediatr. 2013 Aug;9(3):245-50. doi:10.1007/s12519-013-0398-0.

Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014 Apr-May;13(4-5):391-7. doi:10.1016/j.autrev.2014.01.007.

Zhang C, Tian Z. NK cell subsets in autoimmune diseases. J Autoimmun. 2017 Sep;83:22-30. doi:10.1016/j.jaut.2017.02.005.

Brown MA, Hatfield JK. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy? Front Immunol. 2012 Jun 7;3:147. doi:10.3389/fimmu.2012.00147.

Tomczyńska M, Saluk-Bijak J. The mutual cooperation of blood platelets and lymphocytes in the development of autoimmune thyroid diseases. Acta Biochim Pol. 2018;65(1):17-24. doi:10.18388/abp.2017_2321.

Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 2018 Aug;42:37-46. doi:10.1016/j.cytogfr.2018.08.001.

Marca V, Gianchecchi E, Fierabracci A. Type 1 Diabetes and Its Multi-Factorial Pathogenesis: The Putative Role of NK Cells. Int J Mol Sci. 2018 Mar 10;19(3):794. doi:10.3390/ijms19030794.

Lee EK, Sunwoo JB. Natural Killer Cells and Thyroid Diseases. Endocrinol Metab (Seoul). 2019 Jun;34(2):132-137. doi:10.3803/EnM.2019.34.2.132.

Gallo D, Piantanida E, Gallazzi M, et al. Immunological Drivers in Graves' Disease: NK Cells as a Master Switcher. Front Endocrinol (Lausanne). 2020 Jul 17;11:406. doi:10.3389/fendo.2020.00406.

Mikoś H, Mikoś M, Obara-Moszyńska M, Niedziela M. The role of the immune system and cytokines involved in the pathogenesis of autoimmune thyroid disease (AITD). Endokrynol Pol. 2014;65(2):150-5. doi:10.5603/EP.2014.0021.

Ząbczyńska M, Polak K, Kozłowska K, Sokołowski G, Pocheć E. The Contribution of IgG Glycosylation to Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Complement-Dependent Cytotoxicity (CDC) in Hashimoto's Thyroiditis: An in Vitro Model of Thyroid Autoimmunity. Biomolecules. 2020 Jan 22;10(2):171. doi:10.3390/biom10020171.

Martin TC, Ilieva KM, Visconti A, et al. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells. 2020 Mar 9;9(3):665. doi:10.3390/cells9030665.

Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol. 2016 Apr;28(2):159-73. doi:10.1016/j.smim.2016.03.004.

Di Dalmazi G, Hirshberg J, Lyle D, Freij JB, Caturegli P. Reactive oxygen species in organ-specific autoimmunity. Auto Immun Highlights. 2016 Dec;7(1):11. doi:10.1007/s13317-016-0083-0. 

Marcocci C, Leo M, Altea MA. Oxidative stress in graves' disease. Eur Thyroid J. 2012 Jul;1(2):80-7. doi:10.1159/000337976.

Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011 Oct;41(2):190-7. doi:10.1007/s12016-010-8245-8.

Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev. 2019 Feb 1;40(1):236-267. doi:10.1210/er.2018-00066.

Ganesh BB, Bhattacharya P, Gopisetty A, Prabhakar BS. Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity. J Interferon Cytokine Res. 2011 Oct;31(10):721-31. doi:10.1089/jir.2011.0049.

Ben-Skowronek I, Szewczyk L, Ciechanek R, Korobowicz E. Interactions of lymphocytes, thyrocytes and fibroblasts in Hashimoto's thyroiditis: an immunohistochemical and ultrastructural study. Horm Res Paediatr. 2011;76(5):335-42. doi:10.1159/000331857. 

Bossowski A, Harasymczuk J, Moniuszko A, Bossowska A, Hilczer M, Ratomski K. Cytometric evaluation of intracellular IFN-γ and IL-4 levels in thyroid follicular cells from patients with autoimmune thyroid diseases. Thyroid Res. 2011 Sep 23;4:13. doi:10.1186/1756-6614-4-13.

Biondi B, Kahaly GJ, Robertson RP. Thyroid Dysfunction and Diabetes Mellitus: Two Closely Associated Disorders. Endocr Rev. 2019 Jun 1;40(3):789-824. doi:10.1210/er.2018-00163.

Akesson C, Uvebrant K, Oderup C, et al. Altered natural killer (NK) cell frequency and phenotype in latent autoimmune diabetes in adults (LADA) prior to insulin deficiency. Clin Exp Immunol. 2010 Jul 1;161(1):48-56. doi:10.1111/j.1365-2249.2010.04114.x.

Akesson C, Uvebrant K, Oderup C, et al. Altered natural killer (NK) cell frequency and phenotype in latent autoimmune diabetes in adults (LADA) prior to insulin deficiency. Clin Exp Immunol. 2010 Jul 1;161(1):48-56. doi:10.1111/j.1365-2249.2010.04114.x.

Kyritsi EM, Yiakoumis X, Pangalis GA, et al. High Frequency of Thyroid Disorders in Patients Presenting With Neutropenia to an Outpatient Hematology Clinic STROBE-Compliant Article. Medicine (Baltimore). 2015 Jun;94(23):e886. doi:10.1097/MD.0000000000000886.

Guo H, Xu B, Yang X, et al. A high frequency of peripheral blood NKG2D+NK and NKT cells in euthyroid patients with new onset hashimoto's thyroiditis--a pilot study. Immunol Invest. 2014;43(4):312-23. doi:10.3109/08820139.2013.854377.

Jiang TJ, Cao XL, Luan S, et al. Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism. Mol Med Rep. 2018 Feb;17(2):2137-2144. doi:10.3892/mmr.2017.8154.

Zhang Y, Lv G, Lou X, et al. NKG2A expression and impaired function of NK cells in patients with new onset of Graves' disease. Int Immunopharmacol. 2015 Jan;24(1):133-9. doi:10.1016/j.intimp.2014.09.020.

Zakharchenko TF, Gulevaty SV, Volynets IP. Comparative analysis of the activity of cells of innate immunity in patients with benign and malignant thyroid diseases after radioiodine therapy. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(3):210-216. doi:10.22141/2224-0721.15.3.2019.172106. (in Ukrainian).

Harlin H, Hanson M, Johansson CC, et al. The CD16- CD56(bright) NK cell subset is resistant to reactive oxygen species produced by activated granulocytes and has higher antioxidative capacity than the CD16+ CD56(dim) subset. J Immunol. 2007 Oct 1;179(7):4513-9. doi:10.4049/jimmunol.179.7.4513.

Pankiv VI, Yuzvenko TYu, Pankiv IV. Type 2 diabetes mellitus and subclinical hypothyroidism: focusing on the role of cholecalciferol. Problems of Endocrine Pathology. 2019;2:46-51. doi:10.21856/j-PEP.2019.2.07.

Ramos-Leví AM, Marazuela M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. Endocrinol Nutr. 2016 Oct;63(8):421-9. doi:10.1016/j.endonu.2016.04.003.

Liu Y, Tang X, Tian J, et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto's thyroiditis. Int J Mol Sci. 2014 Nov 25;15(12):21674-86. doi:10.3390/ijms151221674.

Bossowski A, Moniuszko M, Idźkowska E, et al. Evaluation of CD4+CD161+CD196+ and CD4+IL-17+ Th17 cells in the peripheral blood of young patients with Hashimoto's thyroiditis and Graves' disease. Pediatr Endocrinol Diabetes Metab. 2012;18(3):89-95. (in Polish).

Bossowski A, Moniuszko M, Idźkowska E, et al. Decreased proportions of CD4 + IL17+/CD4 + CD25 + CD127- and CD4 + IL17+/CD4 + CD25 + CD127 - FoxP3+ T cells in children with autoimmune thyroid diseases (.). Autoimmunity. 2016 Aug;49(5):320-8. doi:10.1080/08916934.2016.1183654.

Kristensen B, Hegedüs L, Madsen HO, Smith TJ, Nielsen CH. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis. Clin Exp Immunol. 2015 Apr;180(1):58-69. doi:10.1111/cei.12557.

Liu Y, Cui X, Wang S, et al. Elevated MicroRNA-326 Levels Regulate the IL-23/IL-23R/Th17 Cell Axis in Hashimoto's Thyroiditis by Targeting a Disintegrin and Metalloprotease 17. Thyroid. 2020 Sep;30(9):1327-1337. doi:10.1089/thy.2019.0552.

Van der Weerd K, Van Hagen PM, Schrijver B, et al. The peripheral blood compartment in patients with Graves' disease: activated T lymphocytes and increased transitional and pre-naive mature B lymphocytes. Clin Exp Immunol. 2013 Nov;174(2):256-64. doi:10.1111/cei.12183.

Bossowski A, Grubczak K, Singh P, et al. Analysis of B regulatory cells with phenotype CD19+CD24hiCD27+IL-10+ and CD19+IL-10+ in the peripheral blood of children with Graves’ disease and Hashimoto’s thyroiditis. Pediatr Endocrinol. 2015;14(Suppl 1):40.

Fallahi P, Ferrari SM, Ragusa F, et al. Th1 Chemokines in Autoimmune Endocrine Disorders. J Clin Endocrinol Metab. 2020 Apr 1;105(4):dgz289. doi:10.1210/clinem/dgz289.

Kemp EH, Ajjan RA, Metcalfe RA, Watson PF, Weetman AP. IL-14 and IL-16 are expressed in the thyroid of patients with either Graves' disease or Hashimoto's thyroiditis. Clin Endocrinol (Oxf). 2015 Nov;83(5):726-32. doi:10.1111/cen.12810.

Gu LQ, Jia HY, Zhao YJ, et al. Association studies of interleukin-8 gene in Graves' disease and Graves' ophthalmopathy. Endocrine. 2009 Dec;36(3):452-6. doi:10.1007/s12020-009-9240-9.

Rapoport B, McLachlan SM. Graves' hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J Clin Endocrinol Metab. 2014 Nov;99(11):4060-1. doi:10.1210/jc.2014-3011.

Guan LJ, Wang X, Meng S, et al. Increased IL-21/IL-21R expression and its proinflammatory effects in autoimmune thyroid disease. Cytokine. 2015 Apr;72(2):160-5. doi:10.1016/j.cyto.2014.11.005.

Sheremet MI. Apoptosis of blood lymphocytes in patients with autoimmune thyroiditis and its treatment. Mìžnarodnij endokrinologìčnij žurnal. 2018;14(3):252-257. doi:10.22141/2224-0721.14.3.2018.136421. (in Ukrainian).

Marique L, Senou M, Craps J, et al. Oxidative Stress and Upregulation of Antioxidant Proteins, Including Adiponectin, in Extraocular Muscular Cells, Orbital Adipocytes, and Thyrocytes in Graves' Disease Associated with Orbitopathy. Thyroid. 2015 Sep;25(9):1033-42. doi:10.1089/thy.2015.0087.

Zdor VV. Correlation of hormonal and cytokines regulation in case of autoimmune thyroiditis. Clinical and experimental thyroidology. 2017;13(2):45-56. doi:10.14341/ket2017245-56. (in Russian).

Yan YR, Gao XL, Zeng J, et al. The association between thyroid autoantibodies in serum and abnormal function and structure of the thyroid. J Int Med Res. 2015 Jun;43(3):412-23. doi:10.1177/0300060514562487.



How to Cite

Zakharchenko, T., & Kravchenko, V. (2021). Peculiarities of innate and adaptive immunity in the pathogenesis of thyroid autoimmune diseases. Immunocorrection (part 1). INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 16(7), 564–576.



Literature Review

Most read articles by the same author(s)