Product of metabolic activity of intestinal microbium trimethylamine-N-oxide (TMAO) — biomarker of progression of atherosclerosis-copy in the heart of the heart

Authors

  • К.О. Shyshkan-Shyshova State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine https://orcid.org/0000-0003-0939-5902
  • O.V. Zinych State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine https://orcid.org/0000-0002-0516-0148

DOI:

https://doi.org/10.22141/2224-0721.18.4.2022.1177

Keywords:

intestinal microbiota metabolites, trimethyla­mine-N-oxide (TMAO), mechanisms of atherogenic action, biomarker of cardiometabolic complications of type 2 diabetes mellitus, review

Abstract

The literature data on the importance of intestinal microbiota as an endocrine organ — producer of biologically active metabolites, which perform key functions to maintain metabolic homeostasis of the whole organism, in particular the condition of the cardiovascular system, are analyzed. Clinical and experimental studies using a metabolomical approach have shown that the development of atherosclerotic CVD is often associated with ele­vated levels of one of the microbial metabolites, trimethylamine N-oxide (TMAO). TMAO may be a sensitive prognostic biomar­ker of complications of type 2 diabetes, including atherosclerosis and cardiovascular disease. The precursor of TMAO is trimethy­lamine (TMA), formed by intestinal bacteria from food phosphatidylcholine and L-carnitine. In the liver, TMA is converted to TMAO under the influence of hepatic flavin monooxygenase 3. The mecha­nisms of the proatherogenic effect of elevated levels of TMAO include effects on bile acid and cholesterol metabolism, platelet hyperactivation, stimulation of inflammatory processes and oxidative stress, induction of endothelial disfunction and endoplasmic reticulum stress. It has been established that TMAO, in conditions of chronic elevation, can contribute to cardiome­tabolic diseases. Elevated le­vels of TMAO in dysmetabolic conditions (obesity, type 2 diabetes, atherosclerosis, or coronary heart disease) have been suggested to be largely associated with the gut microbiota profile. Therefore, regulating the ratio of intestinal microorganisms or their ability to form a precursor of TMAO — TMA, may be a way to develop new tools for the prevention and treatment of atherosclerosis and prevent the progression of cardiovascular complications, including in patients with type 2 diabetes. Studies have shown that inhibiting various stages of TMAO production can reduce TMAO levels and help treat atherosclerosis and diabetes.

Downloads

Download data is not yet available.

References

Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021 Feb;80(1):37-49. doi:10.1017/S0029665120006916.

Ma Q, Li Y, Li P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019 Sep;117:109138. doi:10.1016/j.biopha.2019.109138.

Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019 Mar 1;16(1):53. doi:10.1186/s12974-019-1434-3.

Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients. 2019 Aug 20;11(8):1956. doi:10.3390/nu11081956.

Noce A, Marrone G, Di Daniele F, et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019 May 14;11(5):1073. doi:10.3390/nu11051073.

World Health Organization (WHO). Global Action Plan for the Prevention and Control of NCDs 2013-2020. Geneva, Switzerland: WHO-press; 2013. 103 p.

Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan;183:109119. doi:10.1016/j.diabres.2021.109119.

O'Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016 Aug 20;388(10046):761-775. doi:10.1016/S0140-6736(16)30506-2.

Larin OS, Tkach SM, Timoshenko OS, Yuzvenko TYu. Pathogenetic role of intestinal dysbiosis in obesity and type 2 diabetes mellitus. Clinical Endocrinology and Endocrine Surgery. 2016;(55):82-90. doi:10.24026/1818-1384.3(55).2016.77658. (in Ukrainian).

Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013 Jun 6;498(7452):99-103. doi:10.1038/nature12198.

Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010 Feb 5;5(2):e9085. doi:10.1371/journal.pone.0009085.

Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013 Aug 27;8(8):e71108. doi:10.1371/journal.pone.0071108.

Masenga SK, Hamooya B, Hangoma J, et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J Hum Hypertens. 2022 Apr 25. doi:10.1038/s41371-022-00698-6.

Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. doi:10.1038/ncomms2266.

Van den Munckhof ICL, Kurilshikov A, Ter Horst R, et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev. 2018 Dec;19(12):1719-1734. doi:10.1111/obr.12750.

Zhang X, Gérard P. Diet-gut microbiota interactions on cardiovascular disease. Comput Struct Biotechnol J. 2022 Mar 29;20:1528-1540. doi:10.1016/j.csbj.2022.03.028.

Bergeron N, Williams PT, Lamendella R, et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Br J Nutr. 2016 Dec;116(12):2020-2029. doi:10.1017/S0007114516004165.

Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice. Circulation. 2016 Jun 14;133(24):2434-24 46. doi:10.1161/CIRCULATIONAHA.115.019645.

Ma J, Li H. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol. 2018 Sep 25;9:1082. doi:10.3389/fphar.2018.01082.

Falalyeyeva T, Mamula Y, Scarpellini E, et al. Probiotics and obesity associated disease: an extended view beyond traditional strains. Minerva Gastroenterol (Torino). 2021 Dec;67(4):348-356. doi:10.23736/S2724-5985.21.02909-0.

Wexler AG, Goodman AL. An insider's perspective: Bacteroides as a window into the microbiome. Nat Microbiol. 2017 Apr 25;2:17026. doi:10.1038/nmicrobiol.2017.26.

Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017 Oct 10;8(1):845. doi:10.1038/s41467-017-00900-1.

Cui X, Ye L, Li J, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018 Jan 12;8(1):635. doi:10.1038/s41598-017-18756-2.

Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015 Apr 14;7(4):2839-2849. doi:10.3390/nu7042839.

Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016 Jun 9;534(7606):213-217. doi:10.1038/nature18309.

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018 Feb;15(2):111-128. doi:10.1038/nrgastro.2017.119.

Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 2016 May;124:11-20. doi:10.1016/j.biochi.2015.06.020.

Potrykus M, Szymański M, Kaska Ł, Janczy A. Intestinal barrier disorders and metabolic endotoxemia in obesity: Current knowledge. Advances in Hygiene and Experimental Medicine. 2022;76(1):71-80. doi:10.2478/ahem-2022-0008.

Naghipour S, Cox AJ, Peart JN, Du Toit EF, Headrick JP. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? Nutr Res Rev. 2021 Jun;34(1):125-146. doi:10.1017/S0954422420000177.

He M, Tan CP, Xu YJ, Liu Y. Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? Food Res Int. 2020 Dec;138(Pt B):109812. doi:10.1016/j.foodres.2020.109812.

Wang Z, Tang WH, Buffa JA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014 Apr;35(14):904-910. doi:10.1093/eurheartj/ehu002.

Miao J, Ling AV, Manthena PV, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015 Apr 7;6:6498. doi:10.1038/ncomms7498.

Shih DM, Wang Z, Lee R, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015 Jan;56(1):22-37. doi:10.1194/jlr.M051680.

Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 2015;66:343-359. doi:10.1146/annurev-med-060513-093205.

Wang Q, Guo M, Liu Y, et al. Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice. Nutrients. 2022 Mar 14;14(6):1222. doi:10.3390/nu14061222.

Wang B, Qiu J, Lian J, Yang X, Zhou J. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front Cardiovasc Med. 2021 Nov 23;8:723886. doi:10.3389/fcvm.2021.723886.

Amrein M, Li XS, Walter J, et al. Gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and cardiovascular risk in patients with suspected functionally relevant coronary artery disease (fCAD). Clin Res Cardiol. 2022 Jun;111(6):692-704. doi:10.1007/s00392-022-01992-6.

Mohan V, George M. A Review of The Contribution of Gut-Dependent Microbiota Derived Marker, Trimethylamine N-oxide (TMAO), in Coronary Artery Disease. Curr Res Nutr Food Sci. 2021;9(3):712-721. doi:10.12944/CRNFSJ.9.3.01.

Trøseid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015 Jun;277(6):717-726. doi:10.1111/joim.12328.

Koeth RA, Levison BS, Culley MK, et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014 Nov 4;20(5):799-812. doi:10.1016/j.cmet.2014.10.006.

Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol. 2017 Mar 21;8:139. doi:10.3389/fphys.2017.00139.

Guasch-Ferré M, Hu FB, Ruiz-Canela M, et al. Plasma Metabolites From Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J Am Heart Assoc. 2017 Oct 28;6(11):e006524. doi:10.1161/JAHA.117.006524.

Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. doi:10.1038/nature09922.

Lee Y, Nemet I, Wang Z, et al. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. J Am Heart Assoc. 2021 Sep 7;10(17):e020646. doi:10.1161/JAHA.120.020646.

Li XS, Obeid S, Wang Z, et al. Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur Heart J. 2019 Aug 21;40(32):2700-2709. doi:10.1093/eurheartj/ehz259.

Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017 Oct 14;38(39):2948-2956. doi:10.1093/eurheartj/ehx342.

Farhangi MA, Vajdi M, Asghari-Jafarabadi M. Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose-response meta-analysis. Nutr J. 2020 Jul 30;19(1):76. doi:10.1186/s12937-020-00592-2.

Farhangi MA. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Nutrition. 2020 Oct;78:110856. doi:10.1016/j.nut.2020.110856.

Heianza Y, Ma W, DiDonato JA, et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol. 2020 Feb 25;75(7):763-772. doi:10.1016/j.jacc.2019.11.060.

Senthong V, Kiatchoosakun S, Wongvipaporn C, et al. Gut microbiota-generated metabolite, trimethylamine-N-oxide, and subclinical myocardial damage: a multicenter study from Thailand. Sci Rep. 2021 Jul 22;11(1):14963. doi:10.1038/s41598-021-93803-7.

Amarasekera AT, Chang D. Buddhist meditation for vascular function: A narrative review. Integr Med Res. 2019 Dec;8(4):252-256. doi:10.1016/j.imr.2019.11.002.

Hoevenaars F, van der Kamp JW, van den Brink W, Wopereis S. Next Generation Health Claims Based on Resilience: The Example of Whole-Grain Wheat. Nutrients. 2020 Sep 25;12(10):2945. doi:10.3390/nu12102945.

Chen H, Li J, Li N, Liu H, Tang J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy. 2019 May;38(2):96-104. doi:10.1080/10641955.2019.1584630.

Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients. 2019 Apr 24;11(4):923. doi:10.3390/nu11040923.

Abbasian N. Vascular Calcification Mechanisms: Updates and Renewed Insight into Signaling Pathways Involved in High Phosphate-Mediated Vascular Smooth Muscle Cell Calcification. Biomedicines. 2021 Jul 12;9(7):804. doi:10.3390/biomedicines9070804.

Lin H, Liu T, Li X, Gao X, Wu T, Li P. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann Transl Med. 2020 Aug;8(16):1009. doi:10.21037/atm-20-5307.

Cai J, Zhang M, Liu Y, et al. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci. 2020 Nov 26;10(1):137. doi:10.1186/s13578-020-00500-5.

Holme SAN, Sigsgaard T, Holme JA, Holst GJ. Effects of particulate matter on atherosclerosis: a link via high-density lipoprotein (HDL) functionality? Part Fibre Toxicol. 2020 Aug 4;17(1):36. doi:10.1186/s12989-020-00367-x.

Mazur ОO, Plaksyvyi ОH, Pashkovska NV, Bilooka ІO. State of the large intestine microbiota in patients with type 1 diabetes mellitus depending on the severity of clinical course. Mìžnarodnij endokrinologìčnij žurnal. 2016;(77):61-66. doi:10.22141/2224-0721.5.77.2016.78756. (in Ukrainian).

Jaworska K, Hering D, Mosieniak G, et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel). 2019 Aug 26;11(9):490. doi:10.3390/toxins11090490.

Li J, Zeng Q, Xiong Z, et al. Trimethylamine -N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggravates aortic valve lesions in mice. Cardiovasc Res. 2021 Aug 5:cvab243. doi:10.1093/cvr/cvab243.

Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016 Mar 24;165(1):111-124. doi:10.1016/j.cell.2016.02.011.

Witkowski M, Witkowski M, Friebel J, et al. Vascular endothelial Tissue Factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res. 2021 Aug 5:cvab263. doi:10.1093/cvr/cvab263.

Vinchi F. Thrombosis Prevention: Let's Drug the Microbiome! Hemasphere. 2019 Feb 1;3(1):e165. doi:10.1097/HS9.0000000000000165.

Li Y, Xu Y, Jadhav K, Zhu Y, Yin L, Zhang Y. Hepatic Forkhead Box Protein A3 Regulates ApoA-I (Apolipoprotein A-I) Expression, Cholesterol Efflux, and Atherogenesis. Arterioscler Thromb Vasc Biol. 2019 Aug;39(8):1574-1587. doi:10.1161/ATVBAHA.119.312610.

Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018 Dec 19;17(1):286. doi:10.1186/s12944-018-0939-6.

He Z, Hao W, Kwek E, et al. Fish Oil Is More Potent than Flaxseed Oil in Modulating Gut Microbiota and Reducing Trimethylamine-N-oxide-Exacerbated Atherogenesis. J Agric Food Chem. 2019 Dec 11;67(49):13635-13647. doi:10.1021/acs.jafc.9b06753.

Lim T, Ryu J, Lee K, Park SY, Hwang KT. Protective Effects of Black Raspberry (Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients. 2020 Aug 14;12(8):2448. doi:10.3390/nu12082448.

Yang JJ, Shu XO, Herrington DM, et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr. 2021 May 8;113(5):1145-1156. doi:10.1093/ajcn/nqaa430.

Published

2022-06-30

How to Cite

Shyshkan-Shyshova К., & Zinych, O. (2022). Product of metabolic activity of intestinal microbium trimethylamine-N-oxide (TMAO) — biomarker of progression of atherosclerosis-copy in the heart of the heart. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 18(4), 231–238. https://doi.org/10.22141/2224-0721.18.4.2022.1177

Issue

Section

Literature Review