Pathogenesis of diabetic macular edema: the role of pro-inflammatory and vascular factors. A literature review




diabetic macular edema, type 2 diabetes mellitus, pathogenesis, review


The review presents data on the pathogenesis of diabetic macular edema (DME). DME is a major cause of visual impairment in type 2 diabetes mellitus (DM) patients. Non-specific inflammation is an important factor of the underlying processes of DME. The importance of vascular endothelial growth factor (VEGF), interleukin-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, vascular cell adhesion molecule-1 in the development of diabetes microvascular complications is indica­ted. Intercellular adhesion molecules (ICAM), particularly, soluble ICAM-1 (sICAM-1), are a local inflammatory mediator involved in the pathogenesis of diabetic injury to the layers of the eye. The li­terature is scant on the assessment of sICAM-1 in type 2 DM patients with diabetic injury to the neurovascular system of the eye (i.e. adhesion of leukocytes to the vascular endothelium (leukostasis) and the concurrent endothelial apoptosis). There are three main stages of microvascular changes due to nonspecific inflammation: dilation of capillaries and increased blood flow, microvascular structural chan­ges and leakage of plasma proteins from the bloodstream, transmigration of leukocytes through the endothelium and accumulation at the site of injury. Vascular dysfunction in diabetic retinopathy (DR) and DMЕ is caused primarily by leukostasis, which is based on the recruitment and adhesion of leukocytes to the retinal vascular system. Leukostasis is the first step in the sequence of adhesion and activation events that lead to the infiltration of leukocytes through the endothelium. Leukocytes involved in leukostasis induce vascular permeability by releasing cytokines, including VEGF and TNF-α, contributing to endothelial protein binding, increasing levels of reactive oxidative substances, and kil­ling pericytes and astrocytes surrounding the endothelium. Thus, the existing data on the main aspects of the pathogenesis of DMЕ indicate that inflammation is an important factor in the processes underlying the development of DMЕ and DR. But a new understanding of the physiology of the retina suggests that the pathoge­nesis of retinal lesions in type 2 DM can be considered as a change in the neurovascular unit of the retina.


Download data is not yet available.


Oliveira MIA, de Souza EM, de Oliveira Pedrosa F, et al. RAGE receptor and its soluble isoforms in diabetes mellitus complications. J Bras Patol Med Lab. 2013;49(2):97-108. doi:10.1590/S1676-24442013000200004.

Afarid M, Attarzadeh A, Farvardin M, Ashraf H. The Association of Serum Leptin Level and Anthropometric Measures With the Severity of Diabetic Retinopathy in Type 2 Diabetes Mellitus. Med Hypothesis Discov Innov Ophthalmol. 2018 Winter;7(4):156-162.

Sun Q, Tang L, Zeng Q, Gu M. Assessment for the Correlation Between Diabetic Retinopathy and Metabolic Syndrome: A Cross-Sectional Study. Diabetes Metab Syndr Obes. 2021 Apr 22;14:1773-1781. doi:10.2147/DMSO.S265214.

Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014:801269. doi:10.1155/2014/801269.

Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020 Oct;37:101799. doi:10.1016/j.redox.2020.101799.

Li X, Yu ZW, Li HY, Yuan Y, Gao XY, Kuang HY. Retinal microglia polarization in diabetic retinopathy. Vis Neurosci. 2021 May 3;38:E006. doi:10.1017/S0952523821000031.

Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye (Lond). 2020 Jun;34(Suppl 1):1-51. doi:10.1038/s41433-020-0961-6.

Kim EJ, Lin WV, Rodriguez SM, Chen A, Loya A, Weng CY. Treatment of Diabetic Macular Edema. Curr Diab Rep. 2019 Jul 29;19(9):68. doi:10.1007/s11892-019-1188-4.

Rangasamy S, McGuire PG, Das A. Diabetic retinopathy and inflammation: novel therapeutic targets. Middle East Afr J Ophthalmol. 2012 Jan;19(1):52-59. doi:10.4103/0974-9233.92116.

Mannino G, Longo A, Gennuso F, et al. Effects of High Glucose Concentration on Pericyte-Like Differentiated Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci. 2021 Apr 27;22(9):4604. doi:10.3390/ijms22094604.

Loporchio DF, Tam EK, Cho J, et al. Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells. 2021 Apr 30;10(5):1069. doi:10.3390/cells10051069.

Yao Y, Li R, Du J, Long L, Li X, Luo N. Interleukin-6 and Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Curr Eye Res. 2019 May;44(5):564-574. doi:10.1080/02713683.2019.1570274.

Xie Z, Liang H. Association between diabetic retinopathy in type 2 diabetes and the ICAM-1 rs5498 polymorphism: a meta-analysis of case-control studies. BMC Ophthalmol. 2018 Nov 12;18(1):297. doi:10.1186/s12886-018-0961-5.

Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005 Jul 15;106(2):584-592. doi:10.1182/blood-2004-12-4942.

Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci. 2018 Jun 20;19(6):1816. doi:10.3390/ijms19061816.

Suk SA, Kyryliuk ML, Rykov SA. Blood sICAM-1 levels in patients with type 2 diabetes and diabetic macular edema in association with data of instrumental fundus studies. Ophthalmology. Eastern Europe. 2020;10(1):65-73. doi:10.34883/PI.2020.10.1.007. (in Russian).

Suk SA, Kyryliuk ML, Rykov SO. Blood sICAM-1 levels in type 2 diabetes mellitus patients with various grades of DME. J Ophthalmol (Ukraine). 2019;(5):18-21. doi:10.31288/oftalmolzh201951821. (in Ukrainian).

Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of Diabetic Retinopathy: The Old and the New. Diabetes Metab J. 2018 Oct;42(5):364-376. doi:10.4093/dmj.2018.0182.

Funatsu H, Yamashita H, Sakata K, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005 May;112(5):806-816. doi:10.1016/j.ophtha.2004.11.045.

Yao Y, Du J, Li R, et al. Association between ICAM-1 level and diabetic retinopathy: a review and meta-analysis. Postgrad Med J. 2019 Mar;95(1121):162-168. doi:10.1136/postgradmedj-2018-136102.

Noma H, Mimura T, Yasuda K, Shimura M. Role of inflammation in diabetic macular edema. Ophthalmologica. 2014;232(3):127-135. doi:10.1159/000364955.

Dong N, Xu B, Wang B, Chu L. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy. Mol Vis. 2013 Aug 4;19:1734-1746.

Figueira J, Henriques J, Carneiro Â, et al. Guidelines for the Management of Center-Involving Diabetic Macular Edema: Treatment Options and Patient Monitorization. Clin Ophthalmol. 2021 Jul 30;15:3221-3230. doi:10.2147/OPTH.S318026.

Browning DJ, Stewart MW, Lee C. Diabetic macular edema: Evidence-based management. Indian J Ophthalmol. 2018 Dec;66(12):1736-1750. doi:10.4103/ijo.IJO_1240_18.

Tan GS, Cheung N, Simó R, Cheung GC, Wong TY. Diabetic macular oedema. Lancet Diabetes Endocrinol. 2017 Feb;5(2):143-155. doi:10.1016/S2213-8587(16)30052-3.

Suvas P, Liu L, Rao P, Steinle JJ, Suvas S. Systemic alterations in leukocyte subsets and the protective role of NKT cells in the mouse model of diabetic retinopathy. Exp Eye Res. 2020 Nov;200:108203. doi:10.1016/j.exer.2020.108203.

Kyryliuk M, Іshchenko V. Pathogenesis of diabetic retinopathy: a literature review. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(7):567-575. doi:10.22141/2224-0721.15.7.2019.186061. (in Ukrainian).



How to Cite

Kyryliuk, M., & Suk, S. (2022). Pathogenesis of diabetic macular edema: the role of pro-inflammatory and vascular factors. A literature review. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), 18(3), 180–183.



Literature Review

Most read articles by the same author(s)