Low-Frequency Ultrasound Therapy in Combination Treatment of Patients with Type 2 Diabetes Mellitus

YE.E. LAVRINENKO

Abstract


Background. Hypoglycemic therapy used at present in patients with type 2 diabetes mellitus (DM) does not always lead to desired result and many patients live in a state of constant decompensation of metabolic processes, with the high levels of glycemia and glycosuria. That is why the search for the optimal treatment strategy that could increase the effectiveness of hypoglycemic therapy, and reduce the risk of complications is one of the most actual problems of modern diabetology.
The purpose of this study was to determine the use of low-frequency ultrasound therapy on cutaneous projection of the liver in patients with type 2 DM.
Materials and Methods. 30 patients with newly diagnosed type 2 DM and body mass index (BMI) greater than
25 kg/m2 were treated by the low-frequency ultrasound therapy. The ultrasonic effects were conducted in pulsed mode of 44 kHz and an amplitude of fluctuations — 2 microns using the apparatus MIT-11 as follows. Effects on the area of liver projection in patients was performed by the immovable technique (method), exposure to a session consisted of 8 minutes. The vaseline oil was used as a contact substance. Additionally influence on segmental area of Th7-Th12 by labile technique for 2 minutes on each plot was used to enhance the therapeutic effect. The patients were examined before and after treatment. The dynamics of clinical symptoms, glycemia and glycosuria, level of glycated hemoglobin was taken into account to assess the effectiveness of low-frequency ultrasound. To assess the degree of insulin resistance content of insulin, C-peptide and glucagon in blood plasma were determined by radioimmunoassay. Fasting insulin, C-peptide, glucagon in blood serum were tested in the morning. The statistical processing of tests’ results was performed using Student’s t test.
Results. The beginning of therapeutic effect was observed after 2 procedures of the ultrasound exposure. The maximum effect is appeared after 8–10 treatment sessions. The positive dynamics of complex treatment is improving the general state of health, a disappearance of asthenization, and a decrease in the symptoms of cardiovascular disorders, achieving faster compensation of carbohydrate metabolism. The course of treatment contributed to the hyperglycemia reduction in patients with newly detected type 2 DM. After ultrasound treatment, the authors noted a positive dynamics of clinical symptoms: an improvement of the general health status, a decrease in fatigue, an improvement of psycho-emotional indices, disappearance of pain in the right upper quadrant, and a decrease in liver size in all the patients under study.
Conclusions. The use of low-frequency ultrasound therapy on cutaneous projection of the liver in patients with type 2 DM promotes the normalization both fasting and postprandial glycemia. The effect of low-frequency ultrasound on cutaneous projection of the liver is significantly decreasing parameters that characterize the pancreatic insulin synthesizing function (immunoreactive insulin, C-peptide) in patients with newly diagnosed type 2 DM and a BMI > 25 kg/m2. Low-frequency ultrasound reduces the glucagon secretion and thereby positively affects the hepatic gluconeogenesis. Ultrasound therapy can be used in the complex treatment of patients with newly diagnosed type 2 DM.


Keywords


type 2 diabetes mellitus; ultrasonic therapy; glyconeogenesis; insulin resistance

Full Text:

PDF

References


Amarteifio E., Wormsbecher S., Demirel S. et al. Assessment of skeletal muscle microcirculation in type 2 diabetes mellitus using dynamic contrast-enhanced ultrasound: A pilot study // Diabetes and Vascular Disease Research. — 2013. — Vol. 10, № 3. — P. 79-94.

Berger A.P., Deibl M., Halpern E.J. et al. Vascular damage induced by type 2 diabetes mellitus as a risk factor for benign prostatic hyperplasia // Diabetologia. — 2005. — Vol. 48, № 4. — P. 784-789.

Fonseca V.A. Defining and Characterizing the Progression of Type 2 Diabetes // Diabetes Care. — 2009. — Vol. 32, Suppl. 2. — S151-S156.

Nichols G.A., Hillier T.A., Brown J.B. Progression from newly acquired impaired fasting glucose to type 2 diabetes // Diabetes Care. — 2007. — Vol. 30. — P. 228-233.

Pattoneri P., Sozzi F.B., Elisabetta Catellani E. et al. Myocardial involvement during the early course of type 2 diabetes mellitus: usefulness of Myocardial Performance Index // Cardiovascular Ultrasound. — 2008. — Vol. 6. —

P. 120-126.

Valerio G., del Puente A., Buono P. et al. Quantitative ultrasound of proximal phalanxes in patients with type 1 diabetes mellitus // Diabetes Res. Clin. Pract. — 2004. — Vol. 64, № 3. — P. 161-166.




DOI: https://doi.org/10.22141/2224-0721.3.51.2013.84315

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru