Adiponectin and Diabetes Mellitus Type 2 (Pathogenic Aspects as the Ground for Antidiabetic Pharmacotherapy Optimization)

V.V. Роltorak, M.Yu. Gorshunska, N.S. Krasova

Abstract


The review deals with the role of adipose tissue dysfunction, primarily hypoadiponectinemia, in the development of diabetes mellitus type 2 and its cardiovascular complications. There are accentuated the benefits of oral medications, which have the rehabilitative effect on adiponectin levels in the circulation, during the formation of modern antidiabetic pharmacotherapy algorithm.


Keywords


adiponectin; diabetes mellitus type 2; glimepiride

References


Mello M.M. Obesity — the new frontier of public health law [Text] / M.M. Mello, D.M. Studdert, T.A. Brennan // N. Engl. J. Med. — 2006. — Vol. 354. — P. 2601-2610.

Brockman D.A. Proteomics in the characterization of adipose dysfunction in obesity [Text] / D.A. Brockman, X. Chen // Adipocyte. — 2012. — Vol. 1, № 1. — P. 25-37.

Hossain P. Obesity and diabetes in the developing world- a growing challenge [Text] / P. Hossain, B. Kawar, M.El Nahas // N. Engl. J. Med. — 2007. — Vol. 356. — P. 213-215.

Otto T.C. Adipose development: from stem cell to adipocyte [Text] / T.C. Otto, M.D. Lane // Crit. Rev. Biochem. Mol. Biol. — 2005. — Vol. 40. — P. 229-242.

Trayhurn P. Adipokines: inflammation and the pleiotropic role of white adipose tissue [Text] / P. Trayhurn, I.S. Wood // British Journal of Nutrition. — 2004. — Vol. 92. — P. 347-355.

Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve [Text] / K.S. Cook, H.Y. Min, D. Johnson, R. Chaplinsky [et al.] // Science. — 1987. — Vol. 237. — P. 402-405.

Positional cloning of the mouse obese gene and its human homologue [Text] / Y. Zhang, R. Proenca, M. Maffei [et al.] // Nature. — 1994. — Vol. 372. — P. 425-432.

A novel serum protein similar to C1q, produced exclusively in adipocites [Text] / P.E. Scherer, S. Willams, M. Fogliano [et al.] // J. Biol. Chem. — 1995. — Vol. 270. — P. 26746-26749.

Hu E. AdipoQ is a novel adipose-specific gene dysregulated in obesity [Text] / E. Hu, P. Liang, B.M. Spiegelman // J. Biol. Chem. — 1996. — Vol. 271. — P. 10697-10703.

cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 AdiPose Most abundant Gene transcript [Text] / K. Maeda, K. Okubo, I. Shimomura [et al.] // Biochem. Biophys. Res. Commun. — 1996. — Vol. 221, № 2. — P. 286-289.

Trayhurn P. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ [Text] / P. Trayhurn, J.H. Beattie // Proc. Nutr. Soc. — 2001. — Vol. 60. — P. 329-339.

A family of tissue-specific resistin-like molecules [Text] / C.M. Steppan, E.J. Brown, C.M. Wright [et al.] // Proc. Natl. Acad. Sci. USA. — 2001. — Vol. 98. — P. 502-506.

Trujillo M.E. Adipose tissue-derived factors: impact on health and disease [Text] / M.E. Trujillo, P.E. Scherer // Endocr. Rev. — 2006. — Vol. 27. — P. 762-778.

Kowalska I. Role of adipose tissue in the development of vascular complications in type 2 diabetes mellitus [Text] / I. Kowalska // Diabetes Res. Clin. Pract. — 2007. — Vol. 78. — P. 14-22.

Inadera H. The usefulness of circulating adipokine levels for the assessment of obesity-related health problems [Text] / H. Inadera // Int. J. Med. Sci. — 2008. — Vol. 5, № 5. — P. 248-262.

Scherer P.E. Adipose tissue: from lipid storage compartment to endocrine organ [Text] / P.E. Scherer // Diabetes. — 2006. — Vol. 55. — P. 1537-1545.

Skurk T. Relationship between adipocyte size and adipokine expression and secretion. [Text] / T. Skurk, C. Alberti-Huber, C. Herder [et al.] // J. Clin. Endocrinol. Metab. — 2007. — Vol. 92. — P. 1023-1033.

Fernandez-Real J.M. Innate immunity, insulin resistance and type 2 diabetes [Text] / J.M. Fernandez-Real, J.C. Pickup // Trends. Endocrinol. Metab. — 2008. — Vol. — 19. — P. 10-16.

Oh D.K. Adiponectin in health and disease [Text] / D.K. Oh, T. Ciaraldi, R.R. Henry // Diabete. Obes. Metabol. — 2007. — Vol. 9. — P. 282-289.

Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma [Text] / Y. Nakano, T. Tobe, N.H. Choi-Miura [et al.] // J. Biochem. — 1996. — Vol. 120, № 4. — P. 803-812.

Acrp/30 adiponectin: an adipocytokine regulating glucose and lipid metabolism [Text] / A.H. Berg, T.P. Combs, P.E. Sherer [et al.] // Trends. Endocrinol. Metabol. — 2002. — Vol. 89. — P. 13-84.

Trujillo M.E. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome [Text] / M.E. Trujillo, P.E. Scherer // J. Intern. Med. — 2005. — Vol. 257. — P. 167-175.

The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor [Text] / L. Shapiro, P.E. Scherer // Curr. Biol. — 1998. — Vol. 8. — P. 335-338.

Adiponectin is a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages [Text] / T. Yokota, K. Oritani, I. Takashi [et al.] // Blood. — 2000. — Vol. 96. — P. 1723-1732.

Impaired multimerization of human adiponectin mutants associated with diabetes: Molecular structure and multimer formation of adiponectin [Text] / H. Waki, T. Yamauchi, J. Kamon [et al.] // J. Biol. Chem. — 2003. — Vol. 278. — P. 40352-40363.

Structure function studies of the adipocyte-secreted hormone Acrp/30 adiponectin [Text] / U.B. Pajvani, X. Du, T.P. Combs [et al.] // J. Biol. Chem. — 2003. — Vol. 278. — P. 9073-9085.

Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell [Text] / Y. Arita, S. Kihara, N. Ouchi [et al.] // Circulation. — 2002. — Vol. 105. — P. 2893-2898.

Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males [Text] / F.F. Fisher, M.E. Trujillo, W. Hanif [et al.] // Diabetologia. — 2005. — Vol. 48. — P. 1084-1087.

Adiponectin multimeric complexes and the metabolic syndrome trait cluster [Text] / C. Lara-Castro, N. Luo, P. Wallance [et al.] // Diabetes. — 2006. — Vol. 55. — P. 249-259.

Mechanisms of early insulin-sensitizing effects to thiazolidinediones in type 2 diabetes [Text] / J. Tonelli, W. Li, P. Kishore [et al.] // Diabetes. — 2004. — Vol. 53. — P. 1621-1629.

Горшунська М.Ю. Загальний та високої молекулярної ваги адипонектин у хворих на цукровий діабет 2 типу за урахуванням статі, глікемічного контролю та ступеня інсулінорезистентності (огляд літератури та власні дані) [Текст] / М.Ю. Горшунська // Пробл. ендокр. патології. — 2012. — № 2. — С. 91-107.

High molecular adiponесtin as a predictor of longterm clinical outcome in patients with coronary artery disease [Text] / T. Inoue, N. Kootoka, T. Morooka [et al.] // Am. J. Cardiol. — 2007. — Vol. 100. — P. 569-574.

Progression of atherosclerosis in hemodialysis patients: effect of adiponectin on carotid intima media thickness [Text] / M. Tsushima, Y. Terayama, A. Momose [et al.] // J. Atheroscler. Thromb. — 2008. — Vol. 15. — P. 213-218.

Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin [Text] / H. Kobayashi, N. Ouchi, S. Kihara [et al.] // Circ. Res. — 2004. — Vol. 94. — P. 27-31.

Pajvani U.B. Complex distribution, no absolute amount of adiponectin correlates with thiazolidinedione-mediated improvement in insulin sensitivity [Text] / U.B. Pajvani, M. Hawkins, T.P. Combs // J. Biol. Chem. — 2004. — Vol. 279. — P. 12152-12163.

Comparison of serum high-molecular weight (HMW) adiponectin concentration in type 2 diabetic patients with coronary artery disease using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin [Text] / Y. Aso, R. Yamamoto, S. Wakabayashi [et al.] // Diabetes. — 2006. — Vol. 55. — P. 1954-1960.

Serum high molecular weight as a marker for the evaluation and care of subjects with metabolic syndrome and related disorder [Text] / H. Hirose, Y. Yamamoto, Y. Seino-Yosnihara [et al.] // J. of Atheroscler. and Thrombosis. — 2010. — Vol. 17. — P. 1201-1221.

Total and high-molecular-weight adiponectin and resistin in relation to the risk for Type 2 Diabetes in women [Text] / Ch. Heidemann, Qi Sun, M. Rob [et al.] // Ann. Intern. Med. — 2008. — Vol. 149, № 5. — P. 307-316.

Efficacy of glimepiride on insulin resistance, adipocytokines, and atherosclerosis [Text] / K. Koshiba, M. Nomura, Y. Nakaya, S. Ito // J. Med. Invest. — 2006. — Vol. 53. — P. 87-94.

Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [Text] / T. Yamauchi, J. Kamon, Y. Minokoshi [et al.] // Nat. Med. — 2002. — Vol. 8, № 11. — P. 1288-1295.

Implications of plasma concentrations of adiponectin in patients with coronary artery disease [Text] / Y. Nakamura, K. Shimada, D. Fukuda [et al.] // Heart. — 2004. — Vol. 90. — P. 528-533.

The adipocyte-secreted protein Acrp30 enhances hepatic insulin action [Text] / A.H. Berg, T.P. Combs, X. Du [et al.] // Nat. Med. — 2001. — Vol. 7, № 8. — P. 947-953.

Enhanced muscle fat oxidation and glucose transport by ACR30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation [Text] / E. Tomas, T.S. Tsao, A.K. Saha [et al.] // Proc. Natl. Acad. Sci. USA. — 2002. — Vol. 99. — P. 16309-16313.

The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity [Text] / T. Yamauchi, J. Kamon, H. Waki [et al.] // Nat. Med. — 2001. — Vol. 7. — P. 941-946.

Paradoxycal decrease of an adipose-specific protein adiponectin in obesity [Text] / Y. Arita, S. Kihara, N. Ouchi [et al.] // Biochem. Biophys. Res. Commun. — 1999. — Vol. 257. — P. 79-83.

Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia [Text] / C. Weyer, T. Funahashi, S. Tanaka [et al.] // J. Clin. Endocrinol. Metab. — 2001. — Vol. 86. — P. 1930-1935.

Decreased plasma adiponectin levels in young obese males [Text] / T. Hara, H. Fujiwara, T. Shoji [et al.] // J. Atheroscler. Thromb. — 2003. — Vol. 10. — P. 234-238.

Рівні адипонектину у хворих на цукровий діабет 2 типу за зіставленням з класичними та новітніми чинниками атерогенезу [Текст] / М.Ю. Горшунська, Ю.І. Караченцев, Н.С. Красова [та ін.] // Ендокринологія. — 2007. — Т. 12. — С. 252-261.

PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein [Text] / N. Maeda, M. Takahashi, T. Funahashi [et al.] // Diabetes. — 2001. — Vol. 50. — P. 2094-2099.

Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization [Text] / T.P. Combs, J.A. Wagner, J. Berger [et al.] // Endocrinology. — 2002. — Vol. 143. — P. 998-1007.

Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes [Text] / H. Hirose, T. Kawai, Y. Yamamoto [et al.] // Metabolism. — 2002. — Vol. 51. — P. 314-317.

Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients [Text] / W.S. Yang, C.Y. Jeng, T.J. Wu [et al.] // Diabetes Care. — 2002. — Vol. 25. — P. 376-380.

The effect of thiazolidindiones on plasma adsponectin levels in normal, obese, and type 2 diabetic subjects [Text] / J.G. Yu, S. Javorschi, A.L. Hevener [et al.] // Diabetes. — 2002. — Vol. 51. — P. 2968-2974.

Early, rapid weight loss and very low calorie diet after bariatric surgery uncouples changes in total and HMW adiponectin [Text] / L.K. Meyer, A.C. Wittgrove, T. Martinez [et al.] // Abst. of the 74th scientific sessions of American Diabetes Association. — June 13–17, 2014. — San Francisco, USA. — P. A522.

Adiponectin and development of type 2 diabetes in the Pima Indian population [Text] / R.S. Lindsay, T. Funahashi, R.L. Hanson [et al.] // Lancet. — 2002. — Vol. 360. — P. 57-58.

Adiponectin and protection against type 2 diabetes mellitus [Text] / J. Spranger, A. Kroke, M. Mohling [et al.] // Lancet. — 2003. — Vol. 361. — P. 226-228.

Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary disease in apparently healthy middle-aged men: results from the 18-year follow up of a large cohort from southern Germany [Text] / W. Koenig, N. Khuseinova, J. Baumert [et al.] // J. Am. Cardiol. — 2006. — Vol. 48. — P. 1369-1377.

Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women: The Hoorn Study [Text] / M.B. Snijder, R.J. Heine, J.C. Seidell [et al.] // Diabetes Care. — 2006. — Vol. 29. — P. 2498-2503.

Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians [Text] / C. Snehalatha, B. Mukesh, M. Simon [et al.] // Diabetes Care. — 2003. — Vol. 26. — P. 3226-3229.

Daimon M. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study [Text] / M. Daimon, T. Ozumi, T. Saitoh // Diabetes Care. — 2003. — Vol. 26. — P. 2015-2020.

Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in eldery Koreans [Text] / K.M. Choi, J. Lee, K.W. Lee [et al.] // Clin. Endocrinol. — 2004. — Vol. 61. — P. 75-80.

Decreased total and high molecular weight adiponectin are independent risk factors for the development of type 2 diabetes in Japanese-Americans [Text] / R. Nakashima, N. Kamei, K. Yamane [et al.] // J. Clin. Endocrinol. Metab. — 2006. — Vol. 91. — P. 3873-3877.

Adiponectin and the development of type 2 diabetes: the atherosclerosis risk in communities study [Text] / B.B. Duncan, M.I. Schmidt, J.S. Pankow [et al.] // Diabetes. — 2004. — Vol. 53. — P. 2473-2478.

Adiponectin expression in adipose tissue is reduced in first-degree relatives of type 2 diabetic patients [Text] / A.S. Lihn, T. Ostergard, B. Nyholm [et al.] // Am. J. Physiol. Endocrinol. Metabol. — 2003. — Vol. 284. — P. E443-E448.

Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study [Text] / W.S. Chow, B.M. Cheung, A.W. Tso [et al.] // Hypertension. — 2007. — Vol. 49. — P. 1455-1461.

Plasma adiponectin levels and risk of myocardial infarction in men [Text] / T. Pischon, C.J. Girman, G.S. Hotamisligil [et al.] // JAMA. — 2004. — Vol. 291. — P. 1730-1737.

Adiponectin, metabolic risk factors, and cardiovascular event among patients with end stage renal disease [Text] / C. Zocalli, F. Mallamaci, G. Tripepi [et al.] // J. Am. Soc. Nephol. — 2002. — Vol. 13. — P. 134-141.

The association of plasma adiponectin level with carotid arterial stiffness [Text] / T. Araki, M. Emoto, H. Yokoyama [et al.] // Metabolism. — 2006. — Vol. 55. — P. 587-592.

Mahmud A. Adiponectin and arterial stiffness [Text] / A. Mahmud, J. Feely // Am. J. Hypertens. — 2005. — Vol. 18. — P. 1543-1548.

Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients [Text] / K. Hotta, T. Funahashi, Y. Arita [et al.] // Arterioscler. Thromb. Vasc. Biol. — 2000. — Vol. 20. — P. 1595-1599.

Relationship between metabolic syndrome and early stage coronary atherosclerosis [Text] / T. Hitsumoto, M. Takahashi, T. Lzuka [et al.] // J. Atheroscler. Thromb. — 2007. — Vol. 14. — P. 294-302.

Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells [Text] / N. Ouchi, H. Kobayashi, S. Kihara [et al.] // Biol. Chem. — 2004. — Vol. 279. — P. 1304-1309.

Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice [Text] / Y. Okamoto, S. Kihara, N. Ouchi [et al.] // Circulation. — 2002. — Vol. 106, № 22. — P. 2767-2770.

Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages [Text] / F. Lovren, Y. Pan, A. Quan [et al.] // Am. J. Physiol. Heart Circ. Physiol. — 2010. — Vol. 299. — P. H656-H663.

Adiponectin-mediated modulation of hypertrophic signals in the heart [Text] / R. Shibata, N. Ouchi, M. Ito [et al.] // Nat. Med. — 2004. — Vol. 10. — P. 1384-1389.

An adicyte-derived plasma protein, adiponectin, adheres to injured vascular walls [Text] / Y. Okamoto, Y. Arita, M. Nishida [et al.] // Horm. Metabol. Res. — 2000. — Vol. 32. — P. 47-50.

Matsubara M. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women [Text] / M. Matsubara, S. Maruoka, S. Katayose // Europ. J. Endocrinol. — 2002. — Vol. 147. — P. 173-180.

Adiponectin and cardiovascular health: an update [Text] / X. Hui, K.S.L. Lam, M. Vanhoutte, A. Xu // British J. Pharmacol. — 2012. — Vol. 165. — P. 574-590.

Plasma adipokines at 6–9 weeks postpartum and progression to incident diabetes within two years after GDM pregnancy: SWIFT [Text] / X. Ning, C. Kim, M.-F. Hivert [et al.] // Abst. of the 74th scientific sessions of American Diabetes Association. — June 13–17, 2014. — San Francisco, USA. — P. A336.

Diet-induced insulin resistance in mice lacking adiponectin/ACRP30 [Text] / N. Maeda, I. Shimomura, K. Kishida [et al.] // Nat. Med. — 2002. — Vol. 8. — P. 731-737.

Novel modulator for endothelial adhesion molecules: adipocite-derived plasma protein adiponectin [Text] / N. Ouchi, S. Kihara, Y. Arita [et al.] // Circulation. — 1999. — Vol. 100. — P. 2473-2476.

Adiponectin, an adipocite-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway [Text] / N. Ouchi, S. Kihara, Y. Arita [et al.] // Circulation. — 2000. — Vol. 102. — P. 1296-1301.

Adipocite-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages [Text] / N. Ouchi, S. Kihara, Y. Arita [et al.] // Circulation. — 2001. — Vol. 103. — P. 1057-1063.

Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome [Теxt] / H. Kondo, I. Shimomura, Y. Matsukawa [et al.] // Diabetes. — 2002. — Vol. 51, № 7. — Р. 2325-2328.

Circulation concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys [Text] / K. Hotta, T. Funahashi, N.L. Bodkin [et al.] // Diabetes. — 2001. — Vol. 50. — P. 1126-1133.

Summary of revisions to the 2014 clinical practice recommendations [Text] / American Diabetes Association // Diabetes Care. — 2014. — Vol. 37, Suppl. 1. — P. S4-S80.

Pioglitazone and risk of cardiovascular vents in patients with type 2 diabetes mellitus: a meta-analysis of a randomized trials [Text] / A.M. Lincoff, K. Wolski, S.J. Nicholls, S.E. Nissen // JAMA. — 2007. — Vol. 298. — P. 1180-1188.

Thiazolidinediones and cardiovascular events in high-risk patients with type-2 diabetes mellitus. A comparison with other oral antidiabetic agents [Text] / F.T. Shaya, Z. Lu, K. Sohn, M.R. Weir // P&T. — 2009. — Vol. 34, № 9. — P. 490-500.

Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes [Text] / S.E. Nissen, K. Wolski // N. Eng. J. Med. — 2007. — Vol. 356. — P. 2457-2471.

Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy [Text] / S.E. Kahn, S.M. Haffner, M.A. Heise [et al.] // N. Eng. J. Med. — 2006. — Vol. 355. — P. 2427-2443.

Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial [Text] / DREAM Trial Investigators // Lancet. — 2006. — Vol. 368. — P. 1096-1105.

Home P.D. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol [Text] / P.D. Home, S.J. Pocock, H. Beck-Nielsen // Diabetologia. — 2005. — Vol. 48. — P. 1726-1735.

Krall R.L. Cardiovascular safety of rosiglitazone [Text] // Lancet. — 2007. — Vol. 369. — P. 1995-1996.

Pioglitazone therapy and bladder cancer risk in type 2 diabetes: a meta-analysis of major trials [Text] / J. Wang, B. Liu, J. Zhou [et al.] // Abst. of the 74th scientific sessions of American Diabetes Association. — June 13–17, 2014. — San Francisco, USA. — P. A579.

Pioglitazone increases food intake and adiposity via enhanced AMPK phosphorilation in the hypothalamus of Dio mice [Text] / P.G.F. Quaresma, N. Reencober, A.C. Santos [et al.] // Abst. of the 74th scientific sessions of American Diabetes Association. — June 13–17, 2014. — San Francisco, USA. — P. A289.

Effect of glimepiride on serum adiponectin level in subjects with type 2 diabetes [Text] / S. Nagasaka, A. Taniguchi, Y. Aiso [et al.] // Diabetes Care. — 2003. — Vol. 26. — P. 2215-2216.

Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy [Text] / S.A. Phillips, T.P. Ciaraldi, A.P.S. Kong [et al.] // Diabetes. — 2003. — Vol. 52. — P. 667-674.

The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects [Text] / J.G. Yu, S. Javorschi, A.L. Hevener [et al.] // Diabetes. — 2002. — Vol. 51. — P. 2968-2974.

Synthetic peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients [Text] / W.S. Yang, C.Y. Jeng, T.J. Wu [et al.] // Diabetes Care. — 2002. — Vol. 25. — P. 376-380.

Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects [Text] / T. Tsunekawa, T. Hayashi, Y. Suzuki [et al.] // Diabetes Care. — 2003. — Vol. 26. — P. 285-289.

Sulfonylurea agents exhibit peroxisome proliferator-activated receptor-gamma agonistic activity [Text] / S. Fukuen, M. Iwaki, A. Yasui [et al.] // J. Biol. Chem. — 2005. — Vol. 280. — P. 23653-23659.

Adding glimepiride ti current insulin therapy increases high-molecular weight adiponectin levels to improve glycemic control in poorly controlled type 2 diabetes [Text] / Ch.-J. Li, J.-Y. Zhang, D.-M. Yu, Q.-M. Zhang // Diabetology & Metab. Syndrome. — 2014. — Vol. 6. — Article 41, 7 pages.

Jandeleit-Dahm K.A. Insulin and cardiovascular disease: biomarker or association? [Text] / K.A. Jandeleit-Dahm, S.P. Gray // Diabetologia. — 2012. — Vol. 55, № 12. — P. 3145-3151.

Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes [Text] / M. Fasshauer, J. Klein, S. Neumann [et al.] // Biochem. Biophys. Res. Commun. — 2002. — Vol. 290, № 3. — P. 1084-1089.

Rosak C. The pathophysiologic basis of efficacy and clinical experience with the new oral antidiabetic agents [Text] / C. Rosak // J. Diabetes Complications. — 2002. — Vol. 16. — P. 123-132.

Clark H.E. The effect of glimepiride on pancreatic β-cell function under hyperglycaemic clamp and hyperinsulinaemic, euglicaemic clamp conditions in non-insulin-dependent diabetes mellitus [Text] / H.E. Clark, D.R. Mattews // Horm. Metab. — 1996. — Vol. 28. — P. 445-450.

Muller G. The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug amaryl [Text] / G. Muller // Mol. Med. — 2000. — Vol. 6. — P. 907-933.

Glimepiride: effects on peripheral insulin sensitivity [Text] / A. Volk, E. Maerker, K. Rett [et al.] // Diabetologia. — 2000. — Vol. 43, Suppl. 1. — P. A39.

Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages [Text] / T. Yokota, K. Oritani, I. Takahashi [et al.] // Blood. — 2000. — Vol. 96. — P. 1723-1732.

Hotamisligi G.S. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance [Text] / G.S. Hotamisligi, N.S. Shargill, B.M. Spigelman // Science. — 1993. — Vol. 259. — P. 87-91.

Effect of sulfonylurea drugs on adiponectin production from 3T3-L1 adipocytes: implication of different mechanisms from pioglitazone [Text] / Y. Kanda, M. Matsuda, K. Tawaromoto [et al.] // Diabetes Res. Clin. Pract. — 2008. — Vol. 81. — P. 13-18.

Glimepiride enhances intrinsic peroxisome proliferator-activated receptor-gamma activity in 3T3-L1 adipocytes [Text] / K. Inukai, M. Watanabe, Y. Nakashima [et al.] // Biochem. Biophys. Res. Commun. — 2005. — Vol. 328. — P. 484-490.

Cusi K. Metformin: a review of its metabolic effects [Text] / K. Cusi, R.A. DeFronzo // Diabetes Rev. — 1998. — Vol. 6. — P. 89-131.

Role AMP-activated protein kinase in the mechanism of metformin action [Text] / G. Zhou, R. Myers, Y. Li [et al.] // J. Clin. Invest. — 2001. — Vol. 108. — P. 1167-1174.

Rossetti L. Glucose toxicity [Text] / L. Rossetti, A. Giaccari, R.A. DeFronzo // Diabetes Care. — 1990. — Vol. 13. — P. 610-630.

Holden S.E. Dogenous hyperinsulinaemia and exogenous insulin: a common theme between atherosclerosis, increased cancer risk and other morbidities [Text] / S.E. Holden, C.J. Currie // Atherosclerosis. — 2012. — Vol. 222. — P. 26-28.

Weight changes and their predictors amongst 11140 patients with type 2 diabetes in the ADVANCE trial [Text] / S. van Dieren, S. Czernichow, J. Chalmers [et al.] // Diabetes Obes. Metab. — 2012. — Vol. 14. — P. 464-469.

Johnson J.L. Efficacy of insulin and sulfonylurea combination therapy in type II diabetes. A meta-analysis of the randomized placebo-controlled trials [Text] / J.L. Johnson, S.L. Wolf, U.M. Kabadi // Arch. Intern. Med. — 1996. — Vol. 12. — P. 259-264.

Glimepiride, a novel sulfonylurea, does not abolish myocardial protectionafforded by either ischemic preconditioning or diazoxide [Text] / M.M. Mocanu, H.L. Maddoc, G.F. Baxter [et al.] // Circulation. — 2001. — Vol. 103. — P. 3111-3116.

Lee T.M. Impairment of myocardial protection in type 2 diabetic patients // Lee T.M., Chou T.F. // J. Clin. Endocrinol. Metab. — 2003. — Vol. 88, № 2. — P. 531-537.

The risk of overall mortality in patients with type 2 diabetes receiving glipizide, gliburide, or glimepiride monotherapy: a retrospective analysis [Text] / K.M. Pantalone, M.W. Kattan, C. Yu [et al.] // Diabetes Care. — 2010. — Vol. 33. — P. 1224-1229.

Liu M. Regulation of adiponectin multimerization, signaling and function [Text] / M. Liu, F. Liu // J. Clin. Invest. — 2006. — Vol. 116. — P. 1784-1792.

Kishida K. Clinical importance of assessment of type 2 diabetes mellitus with visceral obesity. A Japanese perspective [Text] / K. Kishida, T. Funacashi, I. Shimomura // Curr. Diabetes Rev. — 2012. — Vol. 8. — P. 84-91.




DOI: https://doi.org/10.22141/2224-0721.5.61.2014.76861

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru