Osteocalcin: the relationship between bone metabolism and glucose homeostasis in diabetes mellitus

Main Article Content

A.V. Кovalchuk
О.В. Zinych
V.V. Korpachev
N.M. Кushnareva
О.В. Prybyla
K.O. Shishkan-Shishova

Abstract

Recent studies have demonstrated the importance of bone as an endocrine organ that produces biologically active substances, which regulate both local bone metabolism and metabolic functions throughout the body. In the process of bone remodeling (formation/destruction), the active cells secrete specific biomarkers that help detect osteometabolic dysfunction. Among bone hormones, osteocalcin plays an important role as a coordinator of bone modeling processes, energy homeostasis, metabolism of glucose, lipids and minerals. Osteocalcin is a structural protein of the bone matrix, which is synthesized by osteoblasts and enters the bloodstream in the process of bone resorption. The level of osteocalcin in the serum is used as a specific marker of bone formation. Osteocalcin promotes pancreatic β-cell proliferation and insulin secretion, and also affects the insulin sensitivity of peripheral tissues. The inverse association of glycemia with the level of osteocalcin was revealed. Patients with type 2 diabetes mellitus usually have normal or even slightly elevated bone mineral density compared to age-appropriate controls. Decreased bone quality and increased risk of fractures are associated with changes in bone microarchitecture and local humoral environment. An imbalance in osteoblast/osteoclast activity may be due to oxidative stress and the accumulation of glycosylation end products, which contributes to chronic inflammation and bone resorbtion in patients with diabetes. It is shown that the level of osteocalcin in the blood serum is significantly reduced compared to healthy controls, both in patients with type 1 diabetes mellitus and, especially, in type 2 diabetes mellitus. Given the importance of developing new approaches to the diagnosis and correction of metabolic disorders in diabetic patients, the study of the influence of bone hormones on hormonal and metabolic parameters and bone status, including the risk of fractures, remains relevant in modern diabetology.

Article Details

How to Cite
Кovalchuk A., Zinych О., V. Korpachev, Кushnareva N., Prybyla О., and K. Shishkan-Shishova. “Osteocalcin: The Relationship Between Bone Metabolism and Glucose Homeostasis in Diabetes Mellitus”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 17, no. 4, Sept. 2021, pp. 322-8, doi:10.22141/2224-0721.17.4.2021.237347.
Section
Literature Review

References

Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017 Jul;60(7):1163-1169. doi: 10.1007/s00125-017-4269-4.

Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, Luo X. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021 May 20;9(1):25. doi: 10.1038/s41413-021-00142-4.

Kajimura D, Lee HW, Riley KJ, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab. 2013 Jun 4;17(6):901-915. doi: 10.1016/j.cmet.2013.04.009.

Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. J Exp Med. 2018 Mar 5;215(3):729-743. doi: 10.1084/jem.20172139.

Andrukhova O, Streicher C, Zeitz U, Erben RG. Fgf23 and parathyroid hormone signaling interact in kidney and bone. Mol Cell Endocrinol. 2016 Nov 15;436:224-39. doi: 10.1016/j.mce.2016.07.035.

Cai X, Xing J, Long C, Peng Q, Humphrey M. DOK3 modulates bone remodeling by negatively regulating osteoclastogenesis and positively regulating osteoblastogenesis. J Bone Min Res. 2017;32(11):2207-2218. doi: 10.1002/jbmr.3205.

Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014 Jul;29(7):1522-30. doi: 10.1002/jbmr.2187.

Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL; IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017 Apr;13(4):208-219. doi: 10.1038/nrendo.2016.153.

Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013 Aug 29;11:201. doi: 10.1186/1479-5876-11-201.

Vasikaran S, Eastell R, Bruyère O, et al; IOF-IFCC Bone Marker Standards Working Group. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011 Feb;22(2):391-420. doi: 10.1007/s00198-010-1501-1.

Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord. 2015 Jun;16(2):93-8. doi: 10.1007/s11154-014-9307-7.

Gupte AA, Sabek OM, Fraga D, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology. 2014 Dec;155(12):4697-705. doi: 10.1210/en.2014-1430.

Milovanovic P, Zimmermann EA, Hahn M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013 Sep 24;7(9):7542-51. doi: 10.1021/nn401360u.

Sullivan TR, Duque G, Keech AC, Herrmann M. An old friend in a new light: the role of osteocalcin in energy metabolism. Cardiovasc Ther. 2013 Apr;31(2):65-75. doi: 10.1111/j.1755-5922.2011.00300.x.

Saleem U, Mosley TH Jr, Kullo IJ. Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1474-8. doi: 10.1161/ATVBAHA.110.204859.

Zanatta LC, Boguszewski CL, Borba VZ, Kulak CA. Osteocalcin, energy and glucose metabolism. Arq Bras Endocrinol Metabol. 2014 Jul;58(5):444-51. doi: 10.1590/0004-2730000003333.

Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest. 2014 Apr;124(4):1-13. doi: 10.1172/JCI72323.

Fernandes TAP, Gonçalves LML, Brito JAA. Relationships between Bone Turnover and Energy Metabolism. J Diabetes Res. 2017;2017:9021314. doi: 10.1155/2017/9021314.

Yeap BB, Alfonso H, Chubb SA, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab. 2015 Jan;100(1):63-71. doi: 10.1210/jc.2014-3019.

González-García ZM, Kullo IJ, Coletta DK, Mandarino LJ, Shaibi GQ. Osteocalcin and type 2 diabetes risk in Latinos: a life course approach. Am J Hum Biol. 2015 Nov-Dec;27(6):859-61. doi: 10.1002/ajhb.22745.

Kunutsor SK, Apekey TA, Laukkanen JA. Association of serum total osteocalcin with type 2 diabetes and intermediate metabolic phenotypes: systematic review and meta-analysis of observational evidence. Eur J Epidemiol. 2015 Aug;30(8):599-614. doi: 10.1007/s10654-015-0058-x.

Confavreux CB, Szulc P, Casey R, Varennes A, Goudable J, Chapurlat RD. Lower serum osteocalcin is associated with more severe metabolic syndrome in elderly men from the MINOS cohort. Eur J Endocrinol. 2014 Aug;171(2):275-83. doi: 10.1530/EJE-13-0567.

Romero-Díaz C, Duarte-Montero D, Gutiérrez-Romero SA, Mendivil CO. Diabetes and Bone Fragility. Diabetes Ther. 2021 Jan;12(1):71-86. doi: 10.1007/s13300-020-00964-1.

Uchida T, Nakamura T, Hashimoto N, et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat Med. 2005 Feb;11(2):175-82. doi: 10.1038/nm1187.

Takahashi A, Mulati M, Saito M, et al. Loss of cyclin-dependent kinase 1 impairs bone formation, but does not affect the bone-anabolic effects of parathyroid hormone. J Biol Chem. 2018 Dec 14;293(50):19387-19399. doi: 10.1074/jbc.RA118.004834.

Ru JY, Wang YF. Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020 Oct 12;11(10):846. doi: 10.1038/s41419-020-03059-8.

Bao YQ, Zhou M, Zhou J, et al. Relationship between serum osteocalcin and glycaemic variability in Type 2 diabetes. Clin Exp Pharmacol Physiol. 2011 Jan;38(1):50-4. doi: 10.1111/j.1440-1681.2010.05463.x.

Ehnert S, Rinderknecht H, Aspera-Werz RH, Häussling V, Nussler AK. Use of in vitro bone models to screen for altered bone metabolism, osteopathies, and fracture healing: challenges of complex models. Arch Toxicol. 2020 Dec;94(12):3937-3958. doi: 10.1007/s00204-020-02906-z.

Ma C, Tonks KT, Center JR, Samocha-Bonet D, Greenfield JR. Complex interplay among adiposity, insulin resistance and bone health. Clin Obes. 2018 Apr;8(2):131-139. doi: 10.1111/cob.12240.

Napoli N, Strotmeyer ES, Ensrud KE, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014 Oct; 57(10):2057-65. doi: 10.1007/s00125-014-3289-6.

Viljakainen H, Ivaska KK, Paldánius P, et al. Suppressed bone turnover in obesity: a link to energy metabolism? A case-control study. J Clin Endocrinol Metab. 2014 Jun;99(6):2155-63. doi: 10.1210/jc.2013-3097.

Tonks KT, White CP, Center JR, Samocha-Bonet D, Greenfield JR. Bone Turnover Is Suppressed in Insulin Resistance, Independent of Adiposity. J Clin Endocrinol Metab. 2017 Apr 1;102(4):1112-1121. doi: 10.1210/jc.2016-3282.

Montagnani A, Gonnelli S. Antidiabetic therapy effects on bone metabolism and fracture risk. Diabetes Obes Metab. 2013 Sep;15(9):784-91. doi: 10.1111/dom.12077.

Poundarik AA, Wu PC, Evis Z, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015 Dec;52:120-130. doi: 10.1016/j.jmbbm.2015.08.012.

McCarthy AD, Etcheverry SB, Bruzzone L, Lettieri G, Barrio DA, Cortizo AM. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biol. 2001;2:16. doi: 10.1186/1471-2121-2-16.

Hein GE. Glycation endproducts in osteoporosis--is there a pathophysiologic importance? Clin Chim Acta. 2006 Sep;371(1-2):32-6. doi: 10.1016/j.cca.2006.03.017.

Gilbert L, He X, Farmer P, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000 Nov;141(11):3956-64. doi: 10.1210/endo.141.11.7739.

Horcajada-Molteni MN, Chanteranne B, Lebecque P, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Miner Res. 2001 May;16(5):958-65. doi: 10.1359/jbmr.2001.16.5.958.

Siris ES, Adler R, Bilezikian J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int. 2014 May;25(5):1439-43. doi: 10.1007/s00198-014-2655-z.

Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010 Nov;95(11):5045-55. doi: 10.1210/jc.2010-0226.

Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013 Feb;28(2):313-24. doi: 10.1002/jbmr.1763.

Ishii S, Cauley JA, Crandall CJ, et al. Diabetes and femoral neck strength: findings from the Hip Strength Across the Menopausal Transition Study. J Clin Endocrinol Metab. 2012 Jan;97(1):190-7. doi: 10.1210/jc.2011-1883.

Urano T, Shiraki M, Kuroda T, et al. Low serum osteocalcin concentration is associated with incident type 2 diabetes mellitus in Japanese women. J Bone Miner Metab. 2018 Jul;36(4):470-477. doi: 10.1007/s00774-017-0857-0.

Takashi Y, Ishizu M, Mori H, et al. Circulating osteocalcin as a bone-derived hormone is inversely correlated with body fat in patients with type 1 diabetes. PLoS One. 2019 May 3;14(5):e0216416. doi: 10.1371/journal.pone.0216416.