The effect of metformin treatment on the level of GLP-1, NT-proBNP and endothelin-1 in patients with type 2 diabetes mellitus

Main Article Content

L.K. Sokolova
Yu.B. Belchina
V.V. Pushkarev
T.S. Vatseba
O.I. Kovzun
V.M. Pushkarev
M.D. Tronko

Abstract

Background. Type 2 diabetes mellitus (T2DM) is closely associated with an increased risk of cardiovascular diseases. It was shown that endothelial dysfunction is one of the key pathological events in the development of chronic vascular diabetic complications. An important effect of endothelial dysfunction is that it increases the production and biological activity of the potent vasoconstrictor and the pro-inflammatory peptide — endothelin (ET). Metformin is used in the treatment of T2DM as a first-line medication. It has been shown that the mechanism of action of metformin may be associated with biochemical processes in the gastrointestinal tract. Brain natriuretic peptide (BNP) is used as a marker in the diagnosis of heart failure. The purpose of this work was to determine and compare ET-1, NT-proBNP and glucagon-like peptide-1 (GLP-1) blood levels in diabetic patients treated with metformin. Materials and methods. NT-proBNP, GLP-1, endothelin-1 and glycated hemoglobin were determined using enzyme-linked immunosorbent assay. To compare the data groups, Student’s t-test and one-way ANOVA were used. Results. The content of ET-1 in the blood of patients with T2DM significantly exceeds its concentration in the control samples. Monotherapy with metformin leads to a decrease in ET-1 levels by more than 65 %. The combination therapy of metformin with insulin causes even greater decrease in ET-1. The blood level of GLP-1 in patients with T2DM is significantly, more than 2 times, reduced compared to healthy people. After metformin treatment, the content of GLP-1 is increased to the control level. The concentration of NT-proBNP in the blood of diabetic patients more than 2 times exceeds the control values. Treatment with metformin leads to a decrease in the content of natriuretic peptide by more than 40 %. Conclusions. Thus, treatment with metformin causes a decrease in ET-1 and NT-proBNP concentrations, and an increase in blood GLP-1 of patients with type 2 diabetes. These events together may indicate a positive protective effect of metformin on the cardiovascular system.

Article Details

How to Cite
Sokolova, L., Y. Belchina, V. Pushkarev, S. Cherviakova, T. Vatseba, O. Kovzun, V. Pushkarev, and M. Tronko. “The Effect of Metformin Treatment on the Level of GLP-1, NT-ProBNP and Endothelin-1 in Patients With Type 2 Diabetes Mellitus”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 8, Aug. 2021, pp. 616-21, doi:10.22141/2224-0721.16.8.2020.222882.
Section
Original Researches

References

Dhananjayan R, Koundinya KS, Malati T, Kutala VK. Endothelial Dysfunction in Type 2 Diabetes Mellitus. Indian J Clin Biochem. 2016 Oct;31(4):372-9. doi:10.1007/s12291-015-0516-y.

Ke J, Liu Y, Yang J, et al. Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway. Sci Rep. 2017 Feb 1;7:41085. doi:10.1038/srep41085.

Jain A, Chen S, Yong H, Chakrabarti S. Endothelin-1 traps potently reduce pathologic markers back to basal levels in an in vitro model of diabetes. J Diabetes Metab Disord. 2018 Oct 18;17(2):189-195. doi:10.1007/s40200-018-0360-8.

Johnström P, Fryer TD, Richards HK, et al. Positron emission tomography of [18F]-big endothelin-1 reveals renal excretion but tissue-specific conversion to [18F]-endothelin-1 in lung and liver. Br J Pharmacol. 2010 Feb;159(4):812-9. doi:10.1111/j.1476-5381.2010.00641.x.

Kalani M. The importance of endothelin-1 for microvascular dysfunction in diabetes. Vasc Health Risk Manag. 2008;4(5):1061-8. doi:10.2147/vhrm.s3920.

el-Mesallamy H, Suwailem S, Hamdy N. Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm. 2007;2007:73635. doi:10.1155/2007/73635.

McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016 Mar;59(3):426-35. doi:10.1007/s00125-015-3844-9.

Bahne E, Sun EWL, Young RL, et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight. 2018 Dec 6;3(23):e93936. doi:10.1172/jci.insight.93936.

DeFronzo RA, Buse JB, Kim T, et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia. 2016 Aug;59(8):1645-54. doi:10.1007/s00125-016-3992-6.

Wolsk E, Claggett B, Pfeffer MA, et al. Role of B-Type Natriuretic Peptide and N-Terminal Prohormone BNP as Predictors of Cardiovascular Morbidity and Mortality in Patients With a Recent Coronary Event and Type 2 Diabetes Mellitus. J Am Heart Assoc. 2017 May 29;6(6):e004743. doi:10.1161/JAHA.116.004743.

Mahadavan G, Nguyen TH, Horowitz JD. Brain natriuretic peptide: a biomarker for all cardiac disease? Curr Opin Cardiol. 2014 Mar;29(2):160-6. doi:10.1097/HCO.0000000000000036.

Baldassarre S, Fragapani S, Panero A, et al. NTproBNP in insulin-resistance mediated conditions: overweight/obesity, metabolic syndrome and diabetes. The population-based Casale Monferrato Study. Cardiovasc Diabetol. 2017 Sep 25;16(1):119. doi:10.1186/s12933-017-0601-z.

Markowicz-Piasecka M, Huttunen KM, Sadkowska A, Sikora J. Pleiotropic Activity of Metformin and Its Sulfonamide Derivatives on Vascular and Platelet Haemostasis. Molecules. 2019 Dec 28;25(1):125. doi:10.3390/molecules25010125.

Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016 Apr;68(2):357-418. doi:10.1124/pr.115.011833.

Pscherer S, Freude T, Forst T, Nussler AK, Braun KF, Ehnert S. Anti-diabetic treatment regulates pro-fibrotic TGF-β serum levels in type 2 diabetics. Diabetol Metab Syndr. 2013 Aug 31;5(1):48. doi:10.1186/1758-5996-5-48.

Xiao H, Zhang J, Xu Z, et al. Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci Rep. 2016 Jun 28;6:28597. doi:10.1038/srep28597.

Sokolova LK, Belchina YuB, Pushkarev VV, et al. The blood level of endothelin-1 in diabetic patients depending on the characteristics of the disease. Mìžnarodnij endokrinologìčnij žurnal. 2020;16(3):204-208. doi:10.22141/2224-0721.16.3.2020.205267.

Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta Mol Basis Dis. 2017 Aug;1863(8):1984-1990. doi:10.1016/j.bbadis.2016.09.019.

Zhou L, Cai X, Li M, Han X, Ji L. Plasma NT-proBNP is independently associated with albuminuria in type 2 diabetes. J Diabetes Complications. 2016 May-Jun;30(4):669-74. doi:10.1016/j.jdiacomp.2016.01.017.

Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. Insulin inhibits AMPK activity and phosphorylates AMPK Ser⁴⁸⁵/⁴⁹¹ through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys. 2014 Nov 15;562:62-9. doi:10.1016/j.abb.2014.08.013.

Pushkarev VV, Sokolova LK, Pushkarev VM, Belchina YB, Vatseba TS, Tronko MD. Effect of combined treatment with insulin and other hypoglycemic drugs on 5'AMP-activated protein kinase activity in lymphocytes in patients with diabetes mellitus. Prob Endocrin Pathol. 2019;3:74-82. doi:10.21856/j-PEP.2019.3.10. (in Russian).

Lteif A, Vaishnava P, Baron AD, Mather KJ. Endothelin limits insulin action in obese/insulin-resistant humans. Diabetes. 2007 Mar;56(3):728-34. doi:10.2337/db06-1406.

Sarafidis PA, Bakris GL. Review: Insulin and endothelin: an interplay contributing to hypertension development? J Clin Endocrinol Metab. 2007 Feb;92(2):379-85. doi:10.1210/jc.2006-1819.

Koska J, Sands M, Burciu C, et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes. 2015 Jul;64(7):2624-35. doi:10.2337/db14-0976.

Lastya A, Saraswati MR, Suastika K. The low level of glucagon-like peptide-1 (glp-1) is a risk factor of type 2 diabetes mellitus. BMC Res Notes. 2014 Nov 26;7:849. doi:10.1186/1756-0500-7-849.

Napolitano A, Miller S, Nicholls AW, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One. 2014 Jul 2;9(7):e100778. doi:10.1371/journal.pone.0100778.

Zilov AV, Abdelaziz SI, AlShammary A, et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev. 2019 Oct;35(7):e3173. doi:10.1002/dmrr.3173.

Liu G, Wu K, Zhang L, et al. Metformin attenuated endotoxin-induced acute myocarditis via activating AMPK. Int Immunopharmacol. 2017 Jun;47:166-172. doi:10.1016/j.intimp.2017.04.002.

Loi H, Boal F, Tronchere H, et al. Metformin Protects the Heart Against Hypertrophic and Apoptotic Remodeling After Myocardial Infarction. Front Pharmacol. 2019 Feb 27;10:154. doi:10.3389/fphar.2019.00154.

Han Y, Xie H, Liu Y, Gao P, Yang X, Shen Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019 Jul 30;18(1):96. doi:10.1186/s12933-019-0900-7.

Yang Q, Yuan H, Chen M, et al. Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits. Life Sci. 2018 Apr 1;198:56-64. doi:10.1016/j.lfs.2018.02.017.

Most read articles by the same author(s)

1 2 3 > >>