Diabetic cardiomyopathy: classification, instrumental diagnostic methods

Authors

DOI:

https://doi.org/10.22141/2224-0721.16.7.2020.219012

Keywords:

diabetes mellitus, diabetic cardiomyopathy, instrumental methods of diagnosis, review

Abstract

This review presents the international classification, analyzes in detail modern instrumental methods for the diagnosis of diabetic cardiomyopathy. In particular, the analysis was carried out of the features and diagnostic criteria of echocardiography, conventional Doppler echocardiography, tissue Doppler imaging, intravenous echocardiography using second-generation contrast agents, Dоppler acoustic echocardiography, three-dimensional echocardiography, speckle tracking echocardiography, magnetic resonance imaging, cardiovascular magnetic resonance imaging, gradient echo magnetic resonance imaging, phase contrast magnetic resonance imaging, tagged magnetic resonance imaging, multi-slice computed tomography, radionuclide myocardial perfusion imaging using ECG-gated single-photon emission computed tomography and positron emission tomography. Diabetic cardiomyopathy occurs quite often and for a long time is asymptomatic, which requires dynamic monitoring and targeted examination for early diagnosis. There are a number of informative instrumental methods of examination, which significantly expand the diagnostic possibilities and in a particular situation provide an opportunity to get an adequate picture of the cardiovascular system. Pathogenetically, diabetic cardiomyopathy is a metabolic myocardial dystrophy associated with impaired cell energy supply, protein synthesis, electrolyte exchange, micronutrient metabolism, redox processes, oxygen transport function of the blood. A significant role in its formation belongs to microangiopathies and hormonal disorders. Patients predominantly have dystrophic changes in the myocardium, which are joined by microvascular lesions with the development of clinical manifestations of non-coronary (non-atherosclerotic) ischemic heart disease, the onset of myocardial infarction not associated with coronary heart disease of atherosclerotic origin.

References

Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014 Apr;57(4):660-71. doi: 10.1007/s00125-014-3171-6.

Tate M, Grieve DJ, Ritchie RH. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci (Lond). 2017 May 1;131(10):897-915. doi: 10.1042/CS20160491.

Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J Am Coll Cardiol. 2018 Jan 23;71(3):339-351. doi: 10.1016/j.jacc.2017.11.019.

Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J Diabetes. 2019 Oct 15;10(10):490-510. doi: 10.4239/wjd.v10.i10.490.

Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Ther Adv Endocrinol Metab. 2019 Mar 27;10:2042018819834869. doi: 10.1177/2042018819834869.

Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in Liver Diseases. J Clin Exp Hepatol. 2017 Dec;7(4):367-372. doi: 10.1016/j.jceh.2017.09.004.

Zaslavskaya EL, Morozov AN, Ionin VA, et al. The role of transforming growth factor beta-1 and galectin-3 in formation of the left atrium fibrosis in patients with paroxysmal atrial fibrillation and metabolic syndrome. Russian Journal of Cardiology. 2018;(2):60-66. (in Russian). doi: 10.15829/1560-4071-2018-2-60-66.

Serhiyenko V, Serhiyenko A. Diabetic cardiac autonomic neuropathy. In: Rodriguez-Saldana J, eds. Diabetes Textbook. Basel: Springer, Cham; 2019. 825-850 pp. doi: 10.1007/978-3-030-11815-0_53.

Paolillo S, Marsico F, Prastaro M, et al. Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Fail Clin. 2019 Jul;15(3):341-347. doi: 10.1016/j.hfc.2019.02.003.

Lee MMY, McMurray JJV, Lorenzo-Almoros A, et al. Diabetic cardiomyopathy. Heart. 2019;105(4):337-345. doi: 10.1136/heartjnl-2016-310342.

Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624-38. doi: 10.1161/CIRCRESAHA.117.311586.

Maack C, Lehrke M, Backs J, et al. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J. 2018 Dec 21;39(48):4243-4254. doi: 10.1093/eurheartj/ehy596.

Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep. 2019 Sep;20(3):2051-2062. doi: 10.3892/mmr.2019.10473.

Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag. 2010 Oct 21;6:883-903. doi: 10.2147/VHRM.S11681.

Qbrezan AG. Controversial questions: “cardiomyopathy” or “myocardiodystrophy”? Vestnik of St. Petersburg University. 2014;2(14):12-20. (in Russian).

Lee WS, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med. 2017 May;32(3):404-421. doi: 10.3904/kjim.2016.208.

Tesfaye S, Sloan G. Diabetic Polyneuropathy - Advances in Diagnosis and Intervention Strategies. Eur Endocrinol. 2020 Apr;16(1):15-20. doi: 10.17925/EE.2020.16.1.15.

Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res. 2017;2017:1310265. doi: 10.1155/2017/1310265.

Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M. Diabetic Cardiomyopathy: Current Approach and Potential Diagnostic and Therapeutic Targets. J Diabetes Res. 2017;2017:1310265. doi: 10.1155/2017/1310265.

Rawshani A, Rawshani A, Franzén S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018 Aug 16;379(7):633-644. doi: 10.1056/NEJMoa1800256.

Dunlay SM, Givertz MM, Aguilar D, et al; American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and the Heart Failure Society of America. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019 Aug 13;140(7):e294-e324. doi: 10.1161/CIR.0000000000000691.

Patil VC, Patil HV, Shah KB, Vasani JD, Shetty P. Diastolic dysfunction in asymptomatic type 2 diabetes mellitus with normal systolic function. J Cardiovasc Dis Res. 2011 Oct;2(4):213-22. doi: 10.4103/0975-3583.89805.

Veklich AS, Koziolova NA, Karavaev PG. Cardiovascular remodeling in patients with diabetic сardiomyopathy. Russian Journal of Cardiology. 2019;(11):42-47. (in Russian). doi: 10.15829/1560-4071-2019-11-42-47.

Teupe C, Rosak C. Diabetic cardiomyopathy and diastolic heart failure -- difficulties with relaxation. Diabetes Res Clin Pract. 2012 Aug;97(2):185-94. doi: 10.1016/j.diabres.2012.03.008.

Gu H, Liu Y, Mei S, et al. Left ventricular diastolic dysfunction in nonhuman primate model of dysmetabolism and diabetes. BMC Cardiovasc Disord. 2015 Oct 30;15:141. doi: 10.1186/s12872-015-0133-y.

Yazıcı D, Özben B, Yavuz D, et al. Epicardial adipose tissue thickness in type 1 diabetic patients. Endocrine. 2011 Oct;40(2):250-5. doi: 10.1007/s12020-011-9478-x.

Lima-Martínez MM, Paoli M, Rodney M, et al. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine. 2016 Mar;51(3):448-55. doi: 10.1007/s12020-015-0710-y.

Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015 Jul 14;36(27):1718-27, 1727a-1727c. doi: 10.1093/eurheartj/ehv134.

Holland DJ, Marwick TH, Haluska BA, et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 2015 Jul;101(13):1061-6. doi: 10.1136/heartjnl-2014-307391.

Cosyns B, Droogmans S, Hernot S, et al. Effect of streptozotocin-induced diabetes on myocardial blood flow reserve assessed by myocardial contrast echocardiography in rats. Cardiovasc Diabetol. 2008 Sep 2;7:26. doi: 10.1186/1475-2840-7-26.

Tadic M, Celic V, Cuspidi C, et al. Right heart mechanics in untreated normotensive patients with prediabetes and type 2 diabetes mellitus: a two- and three-dimensional echocardiographic study. J Am Soc Echocardiogr. 2015 Mar;28(3):317-27. doi: 10.1016/j.echo.2014.11.017.

Badano LP, Boccalini F, Muraru D, et al. Current clinical applications of transthoracic three-dimensional echocardiography. J Cardiovasc Ultrasound. 2012 Mar;20(1):1-22. doi: 10.4250/jcu.2012.20.1.1.

Kobalava ZD, Medovchshikov VV, Yeshniyazov NB, Khasanova ER. The modern paradigm of pathophysiology, prevention and treatment of heart failure in type 2 diabetes mellitus. Russian Journal of Cardiology. 2019;(11):98-111. (in Russian). doi: 10.15829/1560-4071-2019-11-98-111.

Koval SM, Yushko KO, Snihurska IO, Starchenko TG, Pankiv VI, Lytvynova OM, Mysnychenko OV. Relations of angiotensin-(1-7) with hemodynamic and cardiac structural and functional parameters in patients with hypertension and type 2 diabetes. Arterial Hypertension. 2019;23(3):183-189. doi: 10.5603/AH.a2019.0012.

Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010 Apr;23(4):351-69; quiz 453-5. doi: 10.1016/j.echo.2010.02.015.

Sitia S, Tomasoni L, Turiel M. Speckle tracking echocardiography: A new approach to myocardial function. World J Cardiol. 2010 Jan 26;2(1):1-5. doi: 10.4330/wjc.v2.i1.1.

Wu VC, Takeuchi M, Otani K, et al. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2013 Nov;26(11):1274-1281.e4. doi: 10.1016/j.echo.2013.07.006.

Geyer H, Caracciolo G, Abe H, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010 Apr;23(4):351-69; quiz 453-5. doi: 10.1016/j.echo.2010.02.015.

Enomoto M, Ishizu T, Seo Y, et al. Myocardial dysfunction identified by three-dimensional speckle tracking echocardiography in type 2 diabetes patients relates to complications of microangiopathy. J Cardiol. 2016 Oct;68(4):282-7. doi: 10.1016/j.jjcc.2016.03.007.

Liu YW, Su CT, Sung JM, et al. Association of left ventricular longitudinal strain with mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Clin J Am Soc Nephrol. 2013 Sep;8(9):1564-74. doi: 10.2215/CJN.10671012.

Shepherd DL, Nichols CE, Croston TL, et al. Early detection of cardiac dysfunction in the type 1 diabetic heart using speckle-tracking based strain imaging. J Mol Cell Cardiol. 2016 Jan;90:74-83. doi: 10.1016/j.yjmcc.2015.12.001.

Diamant M, Lamb HJ, Groeneveld Y, et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol. 2003 Jul 16;42(2):328-35. doi: 10.1016/s0735-1097(03)00625-9.

Tillquist MN, Maddox TM. Update on diabetic cardiomyopathy: inches forward, miles to go. Curr Diab Rep. 2012 Jun;12(3):305-13. doi: 10.1007/s11892-012-0274-7.

Widya RL, van der Meer RW, Smit JW, et al. Right ventricular involvement in diabetic cardiomyopathy. Diabetes Care. 2013 Feb;36(2):457-62. doi: 10.2337/dc12-0474.

Daneshvar D, Wei J, Tolstrup K, Thomson LE, Shufelt C, Merz CN. Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J. 2010 Sep;160(3):394-404. doi: 10.1016/j.ahj.2010.06.040.

Pankiv VI. Efficacy and pathogenetic justification for the use of vildagliptin in patients with type 2 diabetes mellitus. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(7):28-33. doi: 10.22141/2224-0721.15.7.2019.186055. (in Ukrainian).

Matsue Y, Suzuki M, Nakamura R, et al. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ J. 2011;75(12):2833-9. doi: 10.1253/circj.cj-11-0754.

Ernande L, Audureau E, Jellis CL, et al. Clinical Implications of Echocardiographic Phenotypes of Patients With Diabetes Mellitus. J Am Coll Cardiol. 2017 Oct 3;70(14):1704-1716. doi: 10.1016/j.jacc.2017.07.792.

Ernande L, Bergerot C, Girerd N, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr. 2014 May;27(5):479-88. doi: 10.1016/j.echo.2014.01.001.

Kukharenko SS, Yadrikhinskaya MN, Shatskaya OA, et al. Isolated left ventricular diastolic dysfunction in diabetes mellitus: opinions change. Problems of Endocrinology. 2016;62(6):10-19. (in Russian). doi: 10.14341/probl201662610-19.

From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010 Jan 26;55(4):300-5. doi: 10.1016/j.jacc.2009.12.003. Erratum in: J Am Coll Cardiol. 2010 Nov 2;56(19):1612.

Kadappu KK, Boyd A, Eshoo S, Haluska B, Yeo AE, Marwick TH, Thomas L. Changes in left atrial volume in diabetes mellitus: more than diastolic dysfunction? Eur Heart J Cardiovasc Imaging. 2012 Dec;13(12):1016-23. doi: 10.1093/ehjci/jes084.

Kusunose K, Kwon DH, Motoki H, Flamm SD, Marwick TH. Comparison of three-dimensional echocardiographic findings to those of magnetic resonance imaging for determination of left ventricular mass in patients with ischemic and non-ischemic cardiomyopathy. Am J Cardiol. 2013 Aug 15;112(4):604-11. doi: 10.1016/j.amjcard.2013.04.028.

Shimizu I, Minamino T, Toko H, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010 May;120(5):1506-14. doi: 10.1172/JCI40096.

Liu JH, Chen Y, Yuen M, et al. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2016 Feb 3;15:22. doi: 10.1186/s12933-016-0333-5.

Goebel B, Gjesdal O, Kottke D, et al. Detection of irregular patterns of myocardial contraction in patients with hypertensive heart disease: a two-dimensional ultrasound speckle tracking study. J Hypertens. 2011 Nov;29(11):2255-64. doi: 10.1097/HJH.0b013e32834bdd09.

Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging. 2009 Sep;2(5):356-64. doi: 10.1161/CIRCIMAGING.109.862334.

Zoppini G, Bergamini C, Bonapace S, et al. Left ventricular chamber dilation and filling pressure may help to categorise patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2018 Jun 14;6(1):e000529. doi: 10.1136/bmjdrc-2018-000529.

Dei Cas A, Khan SS, Butler J, et al. Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Heart Fail. 2015 Feb;3(2):136-45. doi: 10.1016/j.jchf.2014.08.004.

Trachanas K, Sideris S, Aggeli C, et al. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic J Cardiol. 2014 Sep-Oct;55(5):411-21.

Published

2020-10-01

Issue

Section

Literature Review