Markers of aggressiveness of non-functional pituitary adenomas with invasive growth. Literature review

Main Article Content

Yu.M. Urmanova
M.B. Mirtukhtaeva

Abstract

Non-functional pituitary adenomas are a morphologically heterogeneous group and are subdivided into silent adenomas that have immunoreactivity to tropic hormones and are similar in structure to typical adenocytes but do not lead to the development of clinical signs of hormonal hypersecretion (silent gonadal, cortical-, thyroid and mammotropinomas), and tumors that do not have specific markers and are similar to adenohypophyseal cells (zero-cell tumors and oncocytomas). According to the studies conduc­ted, all types of silent adenomas have different biological activity, secretory potential, and postoperative outcomes. Active detection of silent pituitary adenomas during immunohistochemical analysis not only allows identifying patients at high risk of disease recurrence but also developing optimal treatment and follow-up tactics, determining indications and evaluating the feasibility of drug and radiation therapy after a neurosurgical intervention. The review article is devoted to the search for prognostic markers of invasive growth of inactive pituitary adenomas. A high level of Ki-67 can be considered as an independent factor and a marker of poor prognosis in pituitary adenomas. The patients with adenomas with high proliferative activity were more often found to develop invasive growth of the adenoma, as well as its malignant transformation — the development of adenocarcinoma. This marker does not depend on other negative prognostic signs — the age and sex of a patient, the adenoma size. Besides, an increase in the proliferation level is more often observed in somatotropinomas and prolactinomas. In recent years, the concept of the cellular and molecular biology of pituitary tumors has changed significantly. It is known that transcription factors regulate the transformation of progenitor cells into mature secretory cells during embryogenesis. Therefore, the search for prognostic criteria for adenomas continues.

Article Details

How to Cite
Urmanova, Y., and M. Mirtukhtaeva. “Markers of Aggressiveness of Non-Functional Pituitary Adenomas With Invasive Growth. Literature Review”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 5, Aug. 2020, pp. 421-6, doi:10.22141/2224-0721.16.5.2020.212746.
Section
Literature Review

References

Sharif-Alhoseini M, Rahimi-Movaghar V. Pituitary adenomas: a review. J Inj Violence Res. 2012;4(3 Suppl 1):56.

Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7(5):257-266. doi:10.1038/nrendo.2011.40.

McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA. Demographic differences in incidence for pituitary adenoma. Pituitary. 2011;14(1):23-30. doi:10.1007/s11102-010-0253-4.

Beylerli OA, Shiguang Z, Gareev IF, Xin C. Diagnosis and Treatment of Pituitary Adenomas. Creative surgery and oncology. 2019;9(4):311-316. doi:10.24060/2076-3093-2019-9-4-311-316. (in Russian).

Gruppetta M, Vassallo J. Epidemiology and radiological geometric assessment of pituitary macroadenomas: population-based study. Clin Endocrinol (Oxf). 2016;85(2):223-231. doi:10.1111/cen.13064.

Urmanova YuM, Alimova KB. Giant pituitary adenomas: prevalence, features of diagnosis clinical course Mìžnarodnij endokrinologìčnij žurnal. 2018;14(5):539-542. doi: 10.22141/2224-0721.14.5.2018.143018. (in Russian).

Joshi H, Vastrad B, Vastrad C. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas. J Mol Neurosci. 2019;68(4):565-589. doi:10.1007/s12031-019-01318-8.

Tjörnstrand A, Gunnarsson K, Evert M, et al. The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur J Endocrinol. 2014;171(4):519-526. doi:10.1530/EJE-14-0144.

Buurman H, Saeger W. Subclinical adenomas in postmortem pituitaries: classification and correlations to clinical data. Eur J Endocrinol. 2006;154(5):753-758. doi:10.1530/eje.1.02107.

Askitis D, Tsitlakidis D, Müller N, et al. Complete evaluation of pituitary tumours in a single tertiary care institution. Endocrine. 2018;60(2):255-262. doi:10.1007/s12020-018-1570-z.

Helle KB. Chromogranins A and B and secretogranin II as prohormones for regulatory peptides from the diffuse neuroendocrine system. Results Probl Cell Differ. 2010;50:21-44. doi:10.1007/400_2009_26.

Hu H, Li B, Zhou C, et al. Diagnostic value of WIF1 methylation for colorectal cancer: a meta-analysis. Oncotarget. 2018;9(4):5378-5386. Published 2018 Jan 3. doi:10.18632/oncotarget.23870.

Song W, Qian L, Jing G, et al. Aberrant expression of the sFRP and WIF1 genes in invasive non-functioning pituitary adenomas. Mol Cell Endocrinol. 2018;474:168-175. doi:10.1016/j.mce.2018.03.005.

Chohan MO, Levin AM, Singh R, et al. Three-dimensional volumetric measurements in defining endoscope-guided giant adenoma surgery outcomes. Pituitary. 2016;19(3):311-321. doi:10.1007/s11102-016-0709-2.

Raverot G, Jouanneau E, Trouillas J. Management of endocrine disease: clinicopathological classification and molecular markers of pituitary tumours for personalized therapeutic strategies. Eur J Endocrinol. 2014;170(4):R121-R132. Published 2014 Mar 13. doi:10.1530/EJE-13-1031.

Coli A, Asa SL, Fadda G, et al. Minichromosome maintenance protein 7 as prognostic marker of tumor aggressiveness in pituitary adenoma patients. Eur J Endocrinol. 2016;174(3):307-314. doi:10.1530/EJE-15-0586.

Zhenye L, Chuzhong L, Youtu W, et al. The expression of TGF-β1, Smad3, phospho-Smad3 and Smad7 is correlated with the development and invasion of nonfunctioning pituitary adenomas. J Transl Med. 2014;12:71. doi:10.1186/1479-5876-12-71.

Chen Y, Chuan HL, Yu SY, et al. A Novel Invasive-Related Biomarker in Three Subtypes of Nonfunctioning Pituitary Adenomas. World Neurosurg. 2017;100:514-521. doi:10.1016/j.wneu.2017.01.010.

Das B, Batool S, Khoja A, Islam N. Presentation, Management, and Outcomes of Nonfunctioning Pituitary Adenomas: An Experience from a Developing Country. Cureus. 2019;11(9):e5759. doi:10.7759/cureus.5759.

Kim YH, Kim JH. Transcriptome Analysis Identifies an Attenuated Local Immune Response in Invasive Nonfunctioning Pituitary Adenomas. Endocrinol Metab (Seoul). 2019;34(3):314-322. doi:10.3803/EnM.2019.34.3.314.

Zakir JC, Casulari LA, Rosa JW, et al. Prognostic Value of Invasion, Markers of Proliferation, and Classification of Giant Pituitary Tumors, in a Georeferred Cohort in Brazil of 50 Patients, with a Long-Term Postoperative Follow-Up. Int J Endocrinol. 2016;2016:7964523. doi:10.1155/2016/7964523.

Landeiro JA, Fonseca EO, Monnerat AL, Taboada GF, Cabral GA, Antunes F. Nonfunctioning giant pituitary adenomas: Invasiveness and recurrence. Surg Neurol Int. 2015;6:179. doi:10.4103/2152-7806.170536.

Mercado M, Melgar V, Salame L, Cuenca D. Clinically non-functioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. Endocrinol Diabetes Nutr. 2017;64(7):384-395. doi:10.1016/j.endinu.2017.05.009.

Nishioka H, Hara T, Nagata Y, Fukuhara N, Yamaguchi-Okada M, Yamada S. Inherent Tumor Characteristics That Limit Effective and Safe Resection of Giant Nonfunctioning Pituitary Adenomas. World Neurosurg. 2017;106:645-652. doi:10.1016/j.wneu.2017.07.043.

Iglesias P, Rodríguez Berrocal V, Díez JJ. Giant pituitary adenoma: histological types, clinical features and therapeutic approaches. Endocrine. 2018;61(3):407-421. doi:10.1007/s12020-018-1645-x.

Yosef L, Ekkehard KM, Shalom M. Giant craniopharyngiomas in children: short- and long-term implications. Childs Nerv Syst. 2016;32(1):79-88. doi:10.1007/s00381-015-2961-6.

Lloyd RV, Osamura RY, Kloppel G, Rosai J, eds. WHO Classification of Tumors of Endocrine Organs, 4th Edition. IARC Press: Lyon; 2017. 355 p.

Kalensky O, Kalensky L, Bilohash S, Garden O. Prognostic significance of Ki-67 expression in pituitary adenomas. Actual issues of clinical and preventive medicine. 2015;3(3-4):33-37 (in Ukrainian).

Most read articles by the same author(s)

1 2 3 4 > >>