Phenotypes of diabetic kidney disease (literature review and own data)

I.O. Tsaryk, N.V. Pashkovska


This article provides up-to-date information about diabetic kidney disease (DKD), given its phenotypes. The literature data on the epidemiology, factors and mechanisms for the development of phenotypes of this complication in diabetes mellitus (DM), as well as the possibility of its diagnosis and treatment are presented. Variants of DKD course depending on the type of diabetes are described, based on our own researches. The analysis data are presented for 1,576 patients with type 1 and type 2 diabetes mellitus and latent autoimmune diabetes in adults, the distribution of patients according to the stages of CKD and phenotypes of DKD is described. According to laboratory and instrumental studies, non-albuminuric renal dysfunction is the dominant phenotype among patients with diabetes (60 % — with type 1 diabetes mellitus, 43 % — with type 2 diabetes mellitus, 53 % — with latent autoimmune diabetes in adults). The differences found depending on the type of DM are probably related to the difference in the mechanisms of kidney damage in various types of DM. Since type 2 DM is usually diagnosed long after manifestation, all pathogenetic links in the occurrence of DKD, including the phenomenon of glucose toxicity, endothelial dysfunction, oxidative stress, etc., lead to greater changes than in patients with type 1 DM, which is diagnosed immediately after the onset of the disease. Also, the frequency of the albuminuric form of DKD in type 2 DM is apparently related to the aggravating effects of hypertension, dyslipidemia, and insulin resistance, which cause the progression of DKD. A decrease in the prevalence of albuminuria phenotype is associated with both the improvement of the nephroprotective effect of hypoglycemic drugs, which allows us to stop the development of proteinuria and contributes to the regression of existing kidney damage, and with an increase in the number of patients having a decline in glomerular filtration rate without proteinuria. These data may be the result of earlier diagnosis of the underlying disease and its complications.


diabetes mellitus; diabetic kidney disease; chronic kidney disease; phenotypes


Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032‐2045. doi:10.2215/CJN.11491116.

Collins AJ, Foley RN, Herzog C, et al. US Renal Data System 2010 Annual Data Report. Am J Kidney Dis. 2011;57(1 Suppl 1):A8‐e526. doi:10.1053/j.ajkd.2010.10.007.

Doshi SM, Friedman AN. Diagnosis and Management of Type 2 Diabetic Kidney Disease. Clin J Am Soc Nephrol. 2017;12(8):1366‐1373. doi:10.2215/CJN.11111016.

Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51(6):905‐915. doi:10.1007/s00592-014-0650-7.

American Diabetes Association. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Suppl 1): S193-S202. doi: 10.2337/dc20-S015.

Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64‐78. doi:10.2337/diab.32.2.s64.

Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol. 2010;6(6):319‐330. doi:10.1038/nrneph.2010.58.

Afkarian M, Zelnick LR, Hall YN, et al. Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988-2014. JAMA. 2016;316(6):602‐610. doi:10.1001/jama.2016.10924.

Lane PH, Steffes MW, Mauer SM. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes. 1992;41(5):581‐586. doi:10.2337/diab.41.5.581.

Tsalamandris C, Allen TJ, Gilbert RE, et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43(5):649‐655. doi:10.2337/diab.43.5.649.

Kramer HJ, Nguyen QD, Curhan G, Hsu CY. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289(24):3273‐3277. doi:10.1001/jama.289.24.3273.

Kume S, Araki SI, Ugi S, et al. Secular changes in clinical manifestations of kidney disease among Japanese adults with type 2 diabetes from 1996 to 2014. J Diabetes Investig. 2019;10(4):1032‐1040. doi:10.1111/jdi.12977.

MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27(1):195‐200. doi:10.2337/diacare.27.1.195.

Dwyer JP, Parving HH, Hunsicker LG, Ravid M, Remuzzi G, Lewis JB. Renal Dysfunction in the Presence of Normoalbuminuria in Type 2 Diabetes: Results from the DEMAND Study. Cardiorenal Med. 2012;2(1):1‐10. doi:10.1159/000333249.

Yokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant. 2009;24(4):1212‐1219. doi:10.1093/ndt/gfn603.

Thomas MC, Macisaac RJ, Jerums G, et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care. 2009;32(8):1497‐1502. doi:10.2337/dc08-2186.

Penno G, Solini A, Bonora E, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29(9):1802‐1809. doi:10.1097/HJH.0b013e3283495cd6.

Afghahi H, Miftaraj M, Svensson AM, et al. Ongoing treatment with renin-angiotensin-aldosterone-blocking agents does not predict normoalbuminuric renal impairment in a general type 2 diabetes population. J Diabetes Complications. 2013;27(3):229‐234. doi:10.1016/j.jdiacomp.2012.10.010.

Hill CJ, Cardwell CR, Patterson CC, et al. Chronic kidney disease and diabetes in the national health service: a cross-sectional survey of the U.K. national diabetes audit. Diabet Med. 2014;31(4):448‐454. doi:10.1111/dme.12312.

Gao B, Wu S, Wang J, et al. Clinical features and long-term outcomes of diabetic kidney disease - A prospective cohort study from China. J Diabetes Complications. 2019;33(1):39‐45. doi:10.1016/j.jdiacomp.2018.09.019.

Bramlage P, Lanzinger S, van Mark G, et al. Patient and disease characteristics of type-2 diabetes patients with or without chronic kidney disease: an analysis of the German DPV and DIVE databases. Cardiovasc Diabetol. 2019;18(1):33. Published 2019 Mar 16. doi:10.1186/s12933-019-0837-x.

Lee HW, Jo AR, Yi DW, Kang YH, Son SM. Prevalent Rate of Nonalbuminuric Renal Insufficiency and Its Association with Cardiovascular Disease Event in Korean Type 2 Diabetes. Endocrinol Metab (Seoul). 2016;31(4):577‐585. doi:10.3803/EnM.2016.31.4.577.

Koye DN, Magliano DJ, Reid CM, et al. Risk of Progression of Nonalbuminuric CKD to End-Stage Kidney Disease in People With Diabetes: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2018;72(5):653‐661. doi:10.1053/j.ajkd.2018.02.364. 

Thorn LM, Gordin D, Harjutsalo V, et al. The Presence and Consequence of Nonalbuminuric Chronic Kidney Disease in Patients With Type 1 Diabetes. Diabetes Care. 2015;38(11):2128‐2133. doi:10.2337/dc15-0641.

Penno G, Russo E, Garofolo M, et al. Evidence for two distinct phenotypes of chronic kidney disease in individuals with type 1 diabetes mellitus. Diabetologia. 2017;60(6):1102‐1113. doi:10.1007/s00125-017-4251-1.

Pacilli A, Viazzi F, Fioretto P, et al. Epidemiology of diabetic kidney disease in adult patients with type 1 diabetes in Italy: The AMD-Annals initiative. Diabetes Metab Res Rev. 2017;33(4):10.1002/dmrr.2873. doi:10.1002/dmrr.2873.

Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006;55(6):1832‐1839. doi:10.2337/db05-1620.

Molitch ME, Steffes M, Sun W, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33(7):1536‐1543. doi:10.2337/dc09-1098.

Krolewski AS. Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2015;38(6):954‐962. doi:10.2337/dc15-0184.

Krolewski AS, Skupien J, Rossing P, Warram JH. Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney Int. 2017;91(6):1300‐1311. doi:10.1016/j.kint.2016.10.046.

Skupien J, Warram JH, Smiles AM, Stanton RC, Krolewski AS. Patterns of Estimated Glomerular Filtration Rate Decline Leading to End-Stage Renal Disease in Type 1 Diabetes. Diabetes Care. 2016;39(12):2262‐2269. doi:10.2337/dc16-0950.

Pugliese G, Penno G, Natali A, et al. Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on "The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function". J Nephrol. 2020;33(1):9‐35. doi:10.1007/s40620-019-00650-x.

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1):1-150. doi: 10.1038/kisup.2012.73.

Krolewski AS, Warram JH, Forsblom C, et al. Serum concentration of cystatin C and risk of end-stage renal disease in diabetes. Diabetes Care. 2012;35(11):2311‐2316. doi:10.2337/dc11-2220. 

Pan Y, Jiang S, Qiu D, et al. Comparing the GFR estimation equations using both creatinine and cystatin c to predict the long-term renal outcome in type 2 diabetic nephropathy patients. J Diabetes Complications. 2016;30(8):1478‐1487. doi:10.1016/j.jdiacomp.2016.07.013.

Fioretto P, Caramori ML, Mauer M. The kidney in diabetes: dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008;51(8):1347‐1355. doi:10.1007/s00125-008-1051-7.

Korbut AI, Klimontov VV. Incretin-based therapy: renal effects. Diabetes Mellitus. 2016;19(1):53-63. doi: 10.14341/DM7727. (in Russian).

Korbut AI, Klimontov VV. Empagliflozin: a new strategy for nephroprotection in diabetes. Diabetes Mellitus. 2017;20(1):75-84. doi: 10.14341/DM8005. (in Russian).

Wookey PJ, Cooper ME. Amylin: physiological roles in the kidney and a hypothesis for its role in hypertension. Clin Exp Pharmacol Physiol. 1998;25(9):653‐660. doi:10.1111/j.1440-1681.1998.tb02272.x.

Pashkovska NV. Latent autoimmune diabetes in adults: a modern look at the problem. Mìžnarodnij endokrinologìčnij žurnal. 2019;15(3):272-280. doi:10.22141/2224-0721.15.3.2019.172116. (in Ukrainian).

Copyright (c) 2020 I.O. Tsaryk, N.V. Pashkovska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© "Publishing House "Zaslavsky", 1997-2020


   Seo анализ сайта