The role of ghrelin and serotonin in the control of eating behavior in patients with obesity and diabetes mellitus type 2

Main Article Content

A.M. Urbanovych
F.V. Laniush

Abstract

In recent years, the incidence of obesity and type 2 diabetes mellitus (DM) has been increasing steadily; therefore, the search for hormonal and metabolic substances the correction of which can normalize human eating behavior is required. The main system for controlling hunger and appetite — the melanocortin pathway — is located in the hypothalamus. Activation of this signa­ling system by melanocortins leads to appetite decrease and causes a feeling of satiety. Neuropeptide Y and agouti-related protein act antagonistically and enhance hunger. There are different types of eating disorders, such as binge eating and night ­eating syndrome, which are most common among obese patients and those with type 2 DM. They are characterized by excessive intake of food and, consequently, complication of the course of underlying disease due to its negative impact on carbohydrate and lipid metabolism. There are various hormonal and metabolic substances that are responsible for suppressing and stimulating the center of hunger in the hypothalamus. This article examines the effect of ghrelin and serotonin on the mechanism of eating habits formation and the control of eating behavior in patients with obesity and type 2 DM. This article highlights the role of ghrelin and serotonin in eating behavior. Ghrelin is an orexigenic hormone and is capable of activating the center of hunger. The concentration of this hormone in patients with obesity and/or type 2 DM is reduced compared to healthy individuals that indicates the adaptation of the body to positive energy balance and excess calorie intake by humans. In turn, serotonin, whose receptors are also present in the hypothalamus, upon bin­ding to 5-HT2C receptor causes inhibition of neuropeptide Y secretion that leads to feeling of satiety and normalization of appetite and weight, thus exhibiting anorexigenic properties. Lorcaserin is currently the only serotonin receptor agonist approved by the Food and Drug Administration for the treatment of obesity. That is why studies of hormonal and metabolic substances that are involved in the signaling pathways of the hypothalamus hunger center will help find effective ways to treat obesity and type 2 DM.

Article Details

How to Cite
Urbanovych, A., and F. Laniush. “The Role of Ghrelin and Serotonin in the Control of Eating Behavior in Patients With Obesity and Diabetes Mellitus Type 2”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 2, Mar. 2020, pp. 145-51, doi:10.22141/2224-0721.16.2.2020.201300.
Section
Literature Review

References

Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015;33(7):673–689. doi:10.1007/s40273-014-0243-x.

Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–781. doi:10.1016/S0140-6736(14)60460-8.

Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–2219. doi:10.1056/NEJMoa1000367.

Prospective Studies Collaboration, Whitlock G, Lewington S, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–1096. doi:10.1016/S0140-6736(09)60318-4.

Heisler LK, Cowley MA, Tecott LH, et al. Activation of central melanocortin pathways by fenfluramine. Science. 2002;297(5581):609–611. doi:10.1126/science.1072327.

Bovetto S, Rouillard C, Richard D. Role of CRH in the effects of 5-HT-receptor agonists on food intake and metabolic rate. Am J Physiol. 1996;271(5 Pt 2):R1231–R1238. doi:10.1152/ajpregu.1996.271.5.R1231.

Javed A, Kamradt MC, Van de Kar LD, Gray TS. D-Fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus, and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala. Neuroscience. 1999;90(3):851–858. doi:10.1016/s0306-4522(98)00523-5.

Stanley BG, Magdalin W, Seirafi A, Thomas WJ, Leibowitz SF. The perifornical area: the major focus of (a) patchily distributed hypothalamic neuropeptide Y-sensitive feeding system(s). Brain Res. 1993;604(1-2):304–317. doi:10.1016/0006-8993(93)90382-w.

Broberger C, De Lecea L, Sutcliffe JG, Hökfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402(4):460–474.

Urbanovych AM. Adipose tissue hormones and their clinical significance. Endocrinology. 2013;18(1):69–72. (in Ukrainian).

Urbanovych AM. Leptin levels in patients with type 2 diabetes with different duration of disease. Problems of Endocrine Pathology. 2013(4):25–30. (in Ukrainian).

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Pub; 2013. doi:10.1176/appi.books.9780890425596.

Wing RR, Marcus MD, Epstein LH, Blair EH, Burton LR. Binge eating in obese patients with type 2 diabetes. International Journal of Eating Disorders. 1989;8(6):671–679. doi:10.1002/1098-108X(198911)8:6<671::AID-EAT2260080608>3.0.CO;2-5.

Crow S, Kendall D, Praus B, Thuras P. Binge eating and other psychopathology in patients with type II diabetes mellitus. Int J Eat Disord. 2001;30(2):222–226. doi:10.1002/eat.1077.

Kenardy J, Mensch M, Bowen K, Green B, Walton J, Dalton M. Disordered eating behaviours in women with Type 2 diabetes mellitus. Eat Behav. 2001;2(2):183–192. doi:10.1016/s1471-0153(01)00028-9.

Herpertz S, Albus C, Kielmann R, et al. Comorbidity of diabetes mellitus and eating disorders: a follow-up study. J Psychosom Res. 2001;51(5):673–678. doi:10.1016/s0022-3999(01)00246-x.

de Zwaan M, Marschollek M, Allison KC. The Night Eating Syndrome (NES) in Bariatric Surgery Patients. Eur Eat Disord Rev. 2015;23(6):426–434. doi:10.1002/erv.2405.

Hilbert A, Pike KM, Goldschmidt AB, et al. Risk factors across the eating disorders. Psychiatry Res. 2014;220(1-2):500–506. doi:10.1016/j.psychres.2014.05.054. 

Allison KC, Lundgren JD, O'Reardon JP, et al. Proposed diagnostic criteria for night eating syndrome. Int J Eat Disord. 2010;43(3):241–247. doi:10.1002/eat.20693.

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. doi:10.1038/45230.

Zhang Y, Fang F, Goldstein JL, Brown MS, Zhao TJ. Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: reversal by growth hormone. Proc Natl Acad Sci U S A. 2015;112(4):1226–1231. doi:10.1073/pnas.1423643112.

Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–977. doi:10.1126/science.273.5277.974.

Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ. Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem. 2012;287(22):17942–17950. doi:10.1074/jbc.M112.358051.

Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology. 2019;160(5):1247–1261. doi:10.1210/en.2019-00074.

Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl). 2014;231(14):2725–2740. doi:10.1007/s00213-014-3640-0.

Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116(12):3229–3239. doi:10.1172/JCI29867.

Skibicka KP, Shirazi RH, Rabasa-Papio C, et al. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake. Neuropharmacology. 2013;73:274–283. doi:10.1016/j.neuropharm.2013.06.004.

Anderberg RH, Hansson C, Fenander M, et al. The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior. Neuropsychopharmacology. 2016;41(5):1199–1209. doi:10.1038/npp.2015.297.

Waxman SE. A systematic review of impulsivity in eating disorders. Eur Eat Disord Rev. 2009;17(6):408–425. doi:10.1002/erv.952.

Skibicka KP, Shirazi RH, Rabasa-Papio C, et al. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake. Neuropharmacology. 2013;73:274–283. doi:10.1016/j.neuropharm.2013.06.004.

Broglio F, Gottero C, Prodam F, et al. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab. 2004;89(6):3062–3065. doi:10.1210/jc.2003-031964.

Mani BK, Zigman JM. Ghrelin as a Survival Hormone. Trends Endocrinol Metab. 2017;28(12):843–854. doi:10.1016/j.tem.2017.10.001.

Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes (Lond). 2009;33(5):541–552. doi:10.1038/ijo.2009.40.

Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–1719. doi:10.2337/diabetes.50.8.1714.

Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–1630. doi:10.1056/NEJMoa012908.

Rubino F, Gagner M. Weight loss and plasma ghrelin levels. N Engl J Med. 2002;347(17):1379–1381. doi:10.1056/NEJM200210243471718.

Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–396. doi:10.1016/j.cell.2008.01.017.

Gutierrez JA, Solenberg PJ, Perkins DR, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci U S A. 2008;105(17):6320–6325. doi:10.1073/pnas.0800708105.

Müller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metab. 2015;4(6):437–460. doi:10.1016/j.molmet.2015.03.005.

Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–913. doi:10.1038/35038090.

Briggs DI, Andrews ZB. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology. 2011;93(1):48–57. doi:10.1159/000322589.

Delhanty PJ, Neggers SJ, van der Lely AJ. Des-acyl ghrelin: a metabolically active peptide. Endocr Dev. 2013;25:112–121. doi:10.1159/000346059.

Ge X, Yang H, Bednarek MA, et al. LEAP2 Is an Endogenous Antagonist of the Ghrelin Receptor. Cell Metab. 2018;27(2):461–469.e6. doi:10.1016/j.cmet.2017.10.016.

Mani BK, Puzziferri N, He Z, et al. LEAP2 changes with body mass and food intake in humans and mice. J Clin Invest. 2019;129(9):3909–3923. doi:10.1172/JCI125332.

Fittipaldi AS, Hernández J, Castrogiovanni D, et al. Plasma levels of ghrelin, des-acyl ghrelin and LEAP2 in children with obesity: correlation with age and insulin resistance. Eur J Endocrinol. 2020;182(2):165–175. doi:10.1530/EJE-19-0684.

Pöykkö SM, Kellokoski E, Hörkkö S, Kauma H, Kesäniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes. 2003;52(10):2546–2553. doi:10.2337/diabetes.52.10.2546.

Barazzoni R, Zanetti M, Ferreira C, et al. Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92(10):3935–3940. doi:10.1210/jc.2006-2527.

Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab. 2002;87(1):240–244. doi:10.1210/jcem.87.1.8129.

Soriano-Guillén L, Barrios V, Campos-Barros A, Argente J. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144(1):36–42. doi:10.1016/j.jpeds.2003.10.036.

Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–709. doi:10.2337/diabetes.50.4.707.

Santosa S, Demonty I, Lichtenstein AH, Cianflone K, Jones PJ. An investigation of hormone and lipid associations after weight loss in women. J Am Coll Nutr. 2007;26(3):250–258. doi:10.1080/07315724.2007.10719608.

Weigle DS, Cummings DE, Newby PD, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab. 2003;88(4):1577–1586. doi:10.1210/jc.2002-021262.

Garcia JM, Iyer D, Poston WS, et al. Rise of plasma ghrelin with weight loss is not sustained during weight maintenance. Obesity (Silver Spring). 2006;14(10):1716–1723. doi:10.1038/oby.2006.197.

Saad MF, Bernaba B, Hwu CM, et al. Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab. 2002;87(8):3997–4000. doi:10.1210/jcem.87.8.8879.

Weickert MO, Loeffelholz CV, Arafat AM, et al. Euglycemic hyperinsulinemia differentially modulates circulating total and acylated-ghrelin in humans. J Endocrinol Invest. 2008;31(2):119–124. doi:10.1007/BF03345577.

Barazzoni R, Zanetti M, Ferreira C, et al. Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92(10):3935–3940. doi:10.1210/jc.2006-2527.

Geliebter A, Hashim SA, Gluck ME. Appetite-related gut peptides, ghrelin, PYY, and GLP-1 in obese women with and without binge eating disorder (BED). Physiol Behav. 2008;94(5):696–699. doi:10.1016/j.physbeh.2008.04.013.

Monteleone P, Fabrazzo M, Tortorella A, Martiadis V, Serritella C, Maj M. Circulating ghrelin is decreased in non-obese and obese women with binge eating disorder as well as in obese non-binge eating women, but not in patients with bulimia nervosa. Psychoneuroendocrinology. 2005;30(3):243–250. doi:10.1016/j.psyneuen.2004.07.004.

Birketvedt GS, Geliebter A, Kristiansen I, Firgenschau Y, Goll R, Florholmen JR. Diurnal secretion of ghrelin, growth hormone, insulin binding proteins, and prolactin in normal weight and overweight subjects with and without the night eating syndrome. Appetite. 2012;59(3):688–692. doi:10.1016/j.appet.2012.07.015.

Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci. 1996;16(7):2352–2364. doi:10.1523/JNEUROSCI.16-07-02352.1996.

Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66(9):1673–1680. doi:10.1016/s0006-2952(03)00556-2.

Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305(5681):217. doi:10.1126/science.1097540.

Merens W, Willem Van der Does AJ, Spinhoven P. The effects of serotonin manipulations on emotional information processing and mood. J Affect Disord. 2007;103(1-3):43–62. doi:10.1016/j.jad.2007.01.032.

Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–281. doi:10.1016/j.smrv.2010.11.003.

Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21(12):1239–1249. doi:10.1111/j.1365-2982.2009.01370.x.

Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science. 2007;317(5839):819–823. doi:10.1126/science.1144400.

Canli T, Lesch KP. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci. 2007;10(9):1103–1109. doi:10.1038/nn1964.

Roth BL, Hanizavareh SM, Blum AE. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology (Berl). 2004;174(1):17–24. doi:10.1007/s00213-003-1683-8.

Messa C, Colombo C, Moresco RM, et al. 5-HT(2A) receptor binding is reduced in drug-naive and unchanged in SSRI-responder depressed patients compared to healthy controls: a PET study. Psychopharmacology (Berl). 2003;167(1):72–78. doi:10.1007/s00213-002-1379-5.

Lam DD, Garfield AS, Marston OJ, Shaw J, Heisler LK. Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav. 2010;97(1):84–91. doi:10.1016/j.pbb.2010.09.003.

Xu Y, Jones JE, Kohno D, et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron. 2008;60(4):582–589. doi:10.1016/j.neuron.2008.09.033.

Gershon MD, Ross LL. Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J Physiol. 1966;186(2):477–492. doi:10.1113/jphysiol.1966.sp008047.

Ekholm R, Ericson LE, Lundquist I. Monoamines in the pancreatic islets of the mouse. Subcellular localization of 5-hydroxytryptamine by electron microscopic autoradiography. Diabetologia. 1971;7(5):339–348. doi:10.1007/bf01219468.

Kim K, Oh CM, Ohara-Imaizumi M, et al. Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology. 2015;156(2):444–452. doi:10.1210/en.2014-1687.

Ohara-Imaizumi M, Kim H, Yoshida M, et al. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy. Proc Natl Acad Sci U S A. 2013;110(48):19420–19425. doi:10.1073/pnas.1310953110.