Clinical and pathogenetic significance of comorbid osteoporosis in diabetes mellitus in women with menopause

Main Article Content

O.V. Syniachenko
M.V. Yermolaieva
D.M. Moroziuk
S.M. Verzilov


Background. Osteoporosis is a serious problem due to the high morbidity, mortality and significant costs for medical care. Moreover, in women in the menopausal period, bone fragility due to osteoporosis is more pronounced, and osteoporotic vertebral fractures are three times more common than in men. Type 2 diabetes mellitus (DM) is closely associated with osteoporosis, and some hormonal and peptide markers of bone metabolism simultaneously determine bone mineralization and the state of carbohydrate metabolism. The purpose was to assess the course of diabetes in women during menopause and to study the clinical and pathogenetic relationship with the presence of osteoporosis in them. Materials and methods. Two hundred and sixty-one women with menopause were examined. They were divided into two groups: 17 % with DM (main one) and 83 % without DM (comparison group). In 51 % of cases, osteoporosis was diagnosed (osteopenia and osteoporosis ratio was 4 : 1). The study of carbohydrate metabolism included the determination of insulin resistance HOMA index and the severity of metabolic syndrome, blood levels of insulin, glucose, glycosylated hemoglobin and C-peptide, and markers of bone metabolism were serum parameters of parathyroid hormone, calcitonin, osteocalcin, osteopontin, alkaline phosphatase activity, chemical elements (Ca, P, Mg, Co, Cr, Cu, Mn, Pb, Se, Sr, Zn). Results. DM was diagnosed in 34 % of women with osteoporosis, which directly correlates with their age, frequency and severity of other signs of metabolic syndrome (hyperinsulinemia, hyperlipidemia, hyperuricemia, arterial hypertension, obesity), the absence of cases of normal lipidemia and type IIA lipid metabolism disorders, but with the prevalence of type IIB, a higher rate of alkaline phosphatase activity in the blood and lower values of osteopontin and selenium. Besides, DM severity is closely related to the parameters of mineral bone density and phosphatemia level, and the development of diabetic retinopathy, nephropathy and peripheral macro-/microangiopathy, respectively, depends on the content of selenium, zinc and osteopontin, and the rate of calcemia has prognostic significance. Conclusions. The pathogenetic significance of comorbid osteoporosis, parameters of bone mineral density and markers of bone metabolism in the blood serum of women with menopause in the development of DM, the severity of its course and complications has been proven, and the indicators of osteopontin, calcium, selenium and zinc have prognostic significance.

Article Details

How to Cite
Syniachenko, O., M. Yermolaieva, D. Moroziuk, and S. Verzilov. “Clinical and Pathogenetic Significance of Comorbid Osteoporosis in Diabetes Mellitus in Women With Menopause”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 16, no. 2, Mar. 2020, pp. 124-9, doi:10.22141/2224-0721.16.2.2020.201297.
Original Researches


Kim HJ, Jang BH, Kim MJ, Kim KC, Kuon WJ, Kim CK. Prevalence of and associations between metabolic syndrome and the constitutions defined by Korean Eight Constitution Medicine. Medicine (Baltimore). 2020;99(7):e19074. doi:10.1097/MD.0000000000019074.

Lozano-Cuenca J, Valencia-Hernández I, López-Canales OA, et al. Possible mechanisms involved in the effect of the subchronic administration of rosuvastatin on endothelial function in rats with metabolic syndrome. Braz J Med Biol Res. 2020;53(2):e9304. doi:10.1590/1414-431X20199304.

O'Donovan AN, Herisson FM, Fouhy F, et al. Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. Am J Physiol Heart Circ Physiol. 2020;318(3):H590–H603. doi:10.1152/ajpheart.00512.2019.

Li RC, Zhang L, Luo H, et al. Subclinical hypothyroidism and anxiety may contribute to metabolic syndrome in Sichuan of China: a hospital-based population study. Sci Rep. 2020;10(1):2261. doi:10.1038/s41598-020-58973-w.

Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059–1062. doi:10.1016/S0140-6736(05)67402-8.

Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care. 2005;28(11):2745–2749. doi:10.2337/diacare.28.11.2745.

Hevener AL, Ribas V, Moore TM, Zhou Z. The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health. Endocrinology. 2020;161(2):bqz017. doi:10.1210/endocr/bqz017.

Seo YR, Kim JS, Kim SS, Jung JG, Yoon SJ. Association between Alcohol Consumption and Metabolic Syndrome Determined by Facial Flushing in Korean Women. Korean J Fam Med. 2020;10.4082/kjfm.19.0141. doi:10.4082/kjfm.19.0141.

Eshaghi FS, Ghazizadeh H, Kazami-Nooreini S, et al. Association of a genetic variant in AKT1 gene with features of the metabolic syndrome. Genes Dis. 2019;6(3):290–295. doi:10.1016/j.gendis.2019.03.002.

Bhalwar R. Metabolic syndrome: The Indian public health perspective. Med J Armed Forces India. 2020;76(1):8–16. doi:10.1016/j.mjafi.2019.12.001.

Yang X, Luo W, Han S, et al. Prevalence of high-risk coronary plaques in patients with and without metabolic syndrome and the relationship with prognosis. BMC Cardiovasc Disord. 2020;20(1):73. doi:10.1186/s12872-020-01358-8.

Kayal RA, Tsatsas D, Bauer MA, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007;22(4):560–568. doi:10.1359/jbmr.070115.

Yamagishi S, Nakamura K, Inoue H. Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med Hypotheses. 2005;65(6):1013–1015. doi:10.1016/j.mehy.2005.07.017.

Huang W, Shu L, Zhao H, Chen S, Zhang H, Song G. Association of the Triglyceride to High-Density Lipoprotein Ratio and the Visceral Adiposity Index with Metabolic Syndrome in Diabetic Susceptible Population. Horm Metab Res. 2020;52(2):95–103. doi:10.1055/a-1089-7991.

Kaneko K, Yatsuya H, Li Y, et al. Risk and population attributable fraction of metabolic syndrome and impaired fasting glucose for the incidence of type 2 diabetes mellitus among middle-aged Japanese individuals: Aichi Worker's Cohort Study. J Diabetes Investig. 2020;10.1111/jdi.13230. doi:10.1111/jdi.13230.

Horikawa K, Kasai Y, Yamakawa T, Sudo A, Uchida A. Prevalence of osteoarthritis, osteoporotic vertebral fractures, and spondylolisthesis among the elderly in a Japanese village. J Orthop Surg (Hong Kong). 2006;14(1):9–12. doi:10.1177/230949900601400103.

Chin KY, Ima-Nirwana S, Mohamed IN, et al. Insulin-like growth factor-1 is a mediator of age-related decline of bone health status in men. Aging Male. 2014;17(2):102–106. doi:10.3109/13685538.2014.896895.

Mohan S, Baylink DJ. Impaired skeletal growth in mice with haploinsufficiency of IGF-I: genetic evidence that differences in IGF-I expression could contribute to peak bone mineral density differences. J Endocrinol. 2005;185(3):415–420. doi:10.1677/joe.1.06141.

Riquelme-Gallego B, García-Molina L, Cano-Ibáñez N, et al. Circulating Undercarboxylated Osteocalcin as Estimator of Cardiovascular and Type 2 Diabetes Risk in Metabolic Syndrome Patients. Sci Rep. 2020;10(1):1840. doi:10.1038/s41598-020-58760-7.

Seibel MJ. Biochemical markers of bone remodeling. Endocrinol Metab Clin North Am. 2003;32(1):83–vii. doi:10.1016/s0889-8529(02)00077-4.

Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi:10.1016/j.bone.2015.05.046.

Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–469. doi:10.1016/j.cell.2007.05.047.

Kindblom JM, Ohlsson C, Ljunggren O, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res. 2009;24(5):785–791. doi:10.1359/jbmr.081234.

De Pergola G, Triggiani V, Bartolomeo N, et al. Independent Relationship of Osteocalcin Circulating Levels with Obesity, Type 2 Diabetes, Hypertension, and HDL Cholesterol. Endocr Metab Immune Disord Drug Targets. 2016;16(4):270–275. doi:10.2174/1871530317666170106150756.

García-Martín A, Cortés-Berdonces M, Luque-Fernández I, Rozas-Moreno P, Quesada-Charneco M, Muñoz-Torres M. Osteocalcin as a marker of metabolic risk in healthy postmenopausal women. Menopause. 2011;18(5):537–541. doi:10.1097/gme.0b013e3181f8565e.

Bulló M, Moreno-Navarrete JM, Fernández-Real JM, Salas-Salvadó J. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk. Am J Clin Nutr. 2012;95(1):249–255. doi:10.3945/ajcn.111.016642.

Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone. 2011;48(4):720–725. doi:10.1016/j.bone.2010.12.020.

Iki M, Tamaki J, Fujita Y, et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int. 2012;23(2):761–770. doi:10.1007/s00198-011-1600-7.

Movahed A, Larijani B, Nabipour I, et al. Reduced serum osteocalcin concentrations are associated with type 2 diabetes mellitus and the metabolic syndrome components in postmenopausal women: the crosstalk between bone and energy metabolism. J Bone Miner Metab. 2012;30(6):683–691. doi:10.1007/s00774-012-0367-z.

Sanchez-Enriquez S, Ballesteros-Gonzalez IT, Villafán-Bernal JR, et al. Serum levels of undercarboxylated osteocalcin are related to cardiovascular risk factors in patients with type 2 diabetes mellitus and healthy subjects. World J Diabetes. 2017;8(1):11–17. doi:10.4239/wjd.v8.i1.11.

Most read articles by the same author(s)