Role of dyslipidemia in the development of nephropathy in patients with type 2 diabetes mellitus (literature review)

Main Article Content

S.I. Ismailov
S.U. Muminova

Abstract

A literature review describes the role of dyslipidemia in the development of nephropathy in patients with type 2 diabetes mellitus. Chronic hyperlipidemia in diabetes is accompanied by damage and dysfunction of various organs and tissues due to a specific generalized change in the microvasculature or microangiopathy. Micro- and macroangiopathies lead to increased cardiovascular mortality in patients with type 2 diabetes mellitus. In patients with diabetes and chronic kidney disease, dyslipidemia can be exacerbated by hyperglycemia and insulin resistance. Control of dyslipidemia is an important therapeutic target, normalization of lipid metabolism and glycemic status reduces the risk of renal complications in type 2 diabetes mellitus.

Article Details

How to Cite
Ismailov, S., and S. Muminova. “Role of Dyslipidemia in the Development of Nephropathy in Patients With Type 2 Diabetes Mellitus (literature Review)”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 15, no. 8, Sept. 2021, pp. 644-8, doi:10.22141/2224-0721.15.8.2019.191689.
Section
Literature Review

References

Rutledge JC, Ng KF, Aung HH, Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol. 2010 Jun;6(6):361-70. doi: 10.1038/nrneph.2010.59.

Weijers RN. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev. 2012 Sep;8(5):390-400.

Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res. 2006 Nov;5(11):2889-900. doi: 10.1021/pr060346u.

Battisti WP, Palmisano J, Keane WE. Dyslipidemia in patients with type 2 diabetes. relationships between lipids, kidney disease and cardiovascular disease. Clin Chem Lab Med. 2003 Sep;41(9):1174-81. doi: 10.1515/CCLM.2003.181.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20. doi: 10.1038/414813a.

Wassef L, Langham RG, Kelly DJ. Vasoactive renal factors and the progression of diabetic nephropathy. Curr Pharm Des. 2004;10(27):3373-84. doi: 10.2174/1381612043383052.

Zheng F, Zeng YJ, Plati AR, et al. Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db/db mice. Kidney Int. 2006 Aug;70(3):507-14. doi: 10.1038/sj.ki.5001578.

de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011 Jun 22;305(24):2532-9. doi: 10.1001/jama.2011.861.

Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019 Mar;73(3S1):A7-A8. doi: 10.1053/j.ajkd.2019.01.001.

Kawanami D, Matoba K, Utsunomiya K. Dyslipidemia in diabetic nephropathy. Ren Replace Ther. 2016;2:16. doi: 10.1186/s41100-016-0028-0.

Rutledge JC, Ng KF, Aung HH, Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol. 2010 Jun;6(6):361-70. doi: 10.1038/nrneph.2010.59.

Hirano T. Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014 Apr;18(2):206-9. doi: 10.1007/s10157-013-0880-y.

Chehade JM, Gladysz M, Mooradian AD. Dyslipidemia in type 2 diabetes: prevalence, pathophysiology, and management. Drugs. 2013 Mar;73(4):327-39. doi: 10.1007/s40265-013-0023-5.

Sang VK, Kaduka L, Kamano J, Makworo D. Prevalence of Dyslipidaemia and The Associated Factors Among Type 2 Diabetes Patients in Turbo Sub-County. J Endocrinol Diab. 2017;4(5):1-9. doi: 10.15226/2374-6890/4/5/00190.

Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018 Sep 1;25(9):771-782. doi: 10.5551/jat.RV17023.

Parhofer KG. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab J. 2015 Oct;39(5):353-62. doi: 10.4093/dmj.2015.39.5.353.

Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014 Dec;63(12):1469-79. doi: 10.1016/j.metabol.2014.08.010. 

Moorhead JF. Lipids and the pathogenesis of kidney disease. Am J Kidney Dis. 1991 May;17(5 Suppl 1):65-70. 

Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol. 2018 Jan;14(1):57-70. doi: 10.1038/nrneph.2017.155.

Angel PM, Spraggins JM, Baldwin HS, Caprioli R. Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem. 2012 Feb 7;84(3):1557-64. doi: 10.1021/ac202383m.

De Koster J, Nelli RK, Strieder-Barboza C, de Souza J, Lock AL, Contreras GA. The contribution of hormone sensitive lipase to adipose tissue lipolysis and its regulation by insulin in periparturient dairy cows. Sci Rep. 2018 Sep 6;8(1):13378. doi: 10.1038/s41598-018-31582-4.

Masuda D, Yamashita S. Postprandial Hyperlipidemia and Remnant Lipoproteins. J Atheroscler Thromb. 2017 Feb 1;24(2):95-109. doi: 10.5551/jat.RV16003.

Hu ZJ, Ren LP, Wang C, Liu B, Song GY. Associations between apolipoprotein CIII concentrations and microalbuminuria in type 2 diabetes. Exp Ther Med. 2014 Sep;8(3):951-956. doi: 10.3892/etm.2014.1830.

Patel VI, Patel KP, Makadia MG, Shah AD, Chaudhari KS, Nilayangode HN. Levels of Apolipoprotein A1, B100 and Lipoprotein (a) in Controlled and Uncontrolled Diabetic Patients and in Non-Diabetic Healthy People. J Clin Diagn Res. 2017 Feb;11(2):BC01-BC05. doi: 10.7860/JCDR/2017/22741.9258.

Bouillet B, Gautier T, Blache D, et al. Glycation of apolipoprotein C1 impairs its CETP inhibitory property: pathophysiological relevance in patients with type 1 and type 2 diabetes. Diabetes Care. 2014 Apr;37(4):1148-56. doi: 10.2337/dc13-1467.

Vergès B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015 May;58(5):886-99. doi: 10.1007/s00125-015-3525-8.

Feng X, Gao X, Yao Z, Xu Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: a cross-sectional study. Lipids Health Dis. 2017 Apr 4;16(1):69. doi: 10.1186/s12944-017-0446-1.

Brites F, Martin M, Guillas I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017 Aug 19;8:66-77. doi: 10.1016/j.bbacli.2017.07.002.

Jiang Y, Ma L, Han C, et al. Effects of Apolipoprotein E Isoforms in Diabetic Nephropathy of Chinese Type 2 Diabetic Patients. J Diabetes Res. 2017;2017:3560920. doi: 10.1155/2017/3560920.

Tsimihodimos V, Mitrogianni Z, Elisaf M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc Med J. 2011;5:41-8. doi: 10.2174/1874192401105010041.

Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitialfibrosis through blocking epithelial to mesenchymal transition. J Mol Med (Berl). 2015 Jul;93(7):759-72. doi: 10.1007/s00109-015-1301-3.

Vallon V, Komers R. Pathophysiology of the diabetic kidney. Compr Physiol. 2011 Jul;1(3):1175-232. doi: 10.1002/cphy.c100049.

Han DC, Isono M, Chen S, et al. Leptin stimulates type I collagen production in db/db mesangial cells: Glucose uptake and TGF-beta type II receptor expression. Kidney Int. 2001 Apr;59(4):1315-23. doi: 10.1046/j.1523-1755.2001.0590041315.x.

Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal. 2016 Jul 20;25(3):119-46. doi: 10.1089/ars.2016.6665.

Most read articles by the same author(s)

1 2 3 > >>