Current advances in clinical pathophysiology in the study of the pathogenesis of type 1 and type 2 diabetes mellitus in humans


  • M.D. Tronko MD, PhD, Professor, Academician of NAS, Head of the State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Vyshgorodska st., 69, Kyiv, 04114, Ukraine
  • K.P. Zak MD, PhD, Professor, Head of the Laboratory of Hormonal regulation, State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the NAMS of Ukraine”, Vyshgorodska st., 69, Kyiv, 04114, Ukraine



clinical pathophysiology, diabetes mellitus type 1 and 2 in a human, diagnosis, pathogenesis, review


The review deals with the development and achievements in a new scientific direction in medicine studying the pathogenesis of various human diseases — clinical pathophy­siology over the last decades. The latest low-traumatic intravital highly sensitive research methods used in pathophysiology for studying the important vital physiological and immunological processes in an organism of patients with type 1 and type 2 diabetes mellitus made it possible to show that the etiopathogenesis of these diseases in humans significantly differs from that in animals with experimental diabetes mellitus. This made it possible to obtain more accurate information about the causes and natural course of diabetes mellitus in humans that requires the development of new methods for its diagnosis, especially at the preclinical stage of development and to stimulate the development of more effective agents for the prevention and treatment of this disease.


Cho NH, Kirigia J, 2. Mbanya CJ, et al. IDF Diabetes Atlas8th edition. Brussels, Belgium: IDF; 2017. 150 p.

American Diabetes Association (ADA). Standards of Medical Care in Diabetes - 2019. Abridged for Primary Care Provide. Clinical Diabetes. 2019 Jan;37(1):11-34. doi: 10.2337/cd18-0105.

Benner C, van der Meulen T, Cacéres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014 Jul 22;15:620. doi: 10.1186/1471-2164-15-620.

Dai C, Brissova M, Hang Y, et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia. 2012 Mar;55(3):707-18. doi: 10.1007/s00125-011-2369-0.

Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018 May;101:287-292. doi: 10.1016/j.biopha.2018.02.103.

Drexhage HA, Dik WA, Leenen PJM, Versnel MA. The immune pathogenesis of type 1 diabetes: Not only thinking outside the cell but also outside the islet and out of the box. Diabetes. 2016 Aug;65(8):2130-2133. doi: 10.2337/dbi16-0030.

Leiter EH, von Herrath M. Animal models have little to teach us about type 1 diabetes: 2. In opposition to this proposal. Diabetologia. 2004 Oct;47(10):1657-1660. doi: 10.1007/s00125-004-1518-0.

Roep BO, Atkinson M. Animal models have little to teach us about type 1 diabetes: 1. In support of this proposal. Diabetologia. 2004 Oct;47(10):1650-1656. doi: 10.1007/s00125-004-1517-1.

Rossini AA. From beast to bedside: a commentary. Diabetologia. 2004;47(10):1647-1649. doi:10.1007/s00125-004-1519-z.

Chmelova H, Cohrs CM, Chouinard JA, et al. Distinct roles of β-cell mass and function during type 1 diabetes onset and remission. Diabetes. 2015 Jun;64(6):2148-2160. doi: 10.2337/db14-1055.

Oram RA, Sims EK, Evans-Molina C. Beta cells in type 1 diabetes: mass and function; sleeping or dead? Diabetologia. 2019 Apr;62(4):567-577. doi: 10.1007/s00125-019-4822-4.

Benninger RKP, Hodson DJ. New understanding of β-cell heterogeneity and in situ islet function. Diabetes. 2018 Apr;67(4):537-547. doi: 10.2337/dbi17-0040.

Haller MJ, Long SA, Blanchfield JL, et al. Low-dose Anti-Thymocyte Globulin Preserves C-Peptide and Reduces A1c in New Onset Type 1 Diabetes: Two Year Clinical Trial Data. Diabetes. 2019 Jun;68(6):1267-1276. doi: 10.2337/db19-0057.

Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia. 2019 Feb;62(2):212-222. doi: 10.1007/s00125-018-4772-2.

Zak KP, Popova VV. Immune intervention in the treatment of diabetes mellitus (analytical review). Dìabet, ožirìnnâ, metaboličnij sindrom. 2015;4(6):31-44. (in Russian).

Battaglia M, Atkinson MA. The streetlight effect in type 1 diabetes. Diabetes. 2015 Apr;64(4):1081-1090. doi: 10.2337/db14-1208.

Lernmark Å. The streetlight effect - is there light at the end of the tunnel? Diabetes. 2015 Apr;64(4):1105-1107. doi: 10.2337/db15-0011.

Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013 Jun 19;309(23):2473-2479. doi: 10.1001/jama.2013.6285.

Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 diabetes TrialNet: A multifaceted approach to bringing disease-modifying therapy to clinical use in type 1 diabetes. Diabetes Care. 2018 Apr;41(4):653-661. doi: 10.2337/dc17-0806.

Purcell AW, Sechi S, DiLorenzo TP. The evolving landscape of autoantigen discovery and characterization in type 1 diabetes. Diabetes. 2019 May;68(5):879-886. doi: 10.2337/dbi18-0066.

Endesfelder D, Zu Castell W, Bonifacio E, et al. Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children. Diabetes. 2019 Jan;68(1):119-130. doi: 10.2337/db18-0594.

Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care. 2015 Jun;38(6):979-988. doi: 10.2337/dc15-0144.

Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015 Oct;38(10):1964-1974. doi: 10.2337/dc15-1419.

Regnell SE, Lernmark Å. Early prediction of autoimmune (type 1) diabetes. Diabetologia. 2017 Aug;60(8):1370-1381. doi: 10.1007/s00125-017-4308-1.

Chiang JL, Maahs DM, Garvey KC, et al. Type 1 diabetes in children and adolescents: A position statement by the American Diabetes Association. Diabetes Care. 2018 Sep;41(9):2026-2044. doi: 10.2337/dci18-0023.

Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151-6. doi: 10.1038/347151a0.

Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. 1974 Nov 30;2(7892):1279-1283. doi: 10.1016/s0140-6736(74)90140-8.

Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science. 1983 Dec 23;222(4630):1337-1339. doi: 10.1126/science.6362005.

Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17040-17045.

Zak KP, Tron'ko ND, Popova VV, Butenko AK. Sakharnyi diabet. Immunitet. Tsitokiny [Diabetes. Immunity. Cytokines]. Kyiv: Knyga-pljus; 2015. 485 p. (in Russian).

Bonifacio E, Mathieu C, Nepom GT, et al. Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity. Diabetologia. 2017 Jan;60(1):35-38. doi: 10.2337/dc15-0101.

Popova VV, Zak KP, Melnichenko SV, et al. Results of twenty years studies on immunity at the preclinical phase of type 1 diabetes mellitus development in children according to the IPDM program: 2. Content of various types of cytokines and chemokines in the blood. Endokrynologіa. 2018;23(2):109-121. (in Russian).

Xu P, Krischer JP; Type 1 Diabetes TrialNet Study Group. Prognostic classification factors associated with development of multiple autoantibodies, dysglycemia, and type 1 diabetes - A recursive partitioning analysis. Diabetes Care. 2016 Jun;39(6):1036-1044. doi: 10.2337/dc15-2292.

Tron’ko ND, Popova VV, Zak KP, Mankovsky BN. About the scientific research prospective program on Immunity in the preclinical period of the development of type 1 diabetes created at the State Institution VP Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine. Endokrynologia. 2010;15(2):180-191. (in Russian).

Popova VV, Zak KP, Tron’ko ND. Contemporary ideas about pathophysiological mechanisms of immunity destruction in the preclinical stage of type 1 diabetes. Problemi endokrinnoi patologii. 2019;(3):136-144. (in Russian).

Muz NM, Popova VV, Orlenko VL, Ivaskiva KY, Sayenko YA, Tron’ko KM. Effect of vitamin D therapy on immunological parameters at stages of development of type 1 diabetes in children and adolescents. In: Abstracts of the 54th EASD Annual Meeting: Berlin, Germany, 1-5 October 2018. Diabetologia. 2018;61(Suppl 1):A-293. doi: 10.1007/s00125-018-4693-0.

Perdigoto AL, Preston-Hurlburt P, Clark P, et al. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia. 2019;62(4):655-664. doi: 10.1007/s00125-018-4786-9.

Ziegler AG, Bonifacio E, Powers AC, Todd JA, Harrison LC, Atkinson MA. Type 1 diabetes prevention: A goal dependent on accepting a diagnosis of an asymptomatic disease. Diabetes. 2016 Nov;65(11):3233-3239. doi: 10.2337/db16-0687.

Zak KP, Afanasyeva VV, Khruzov MA. Quantity and ultrastructure of lymphocytes of different immunophenotype in blood of elderly patients with type 2 diabetes with different body weight. In: Proceeding of the II International Conference on Microcirculation and Its Age-Related Changes. 2002, May 22-24; Kyiv, Ukraine. Kyiv; 2002. 118-119 pp. (in Ukrainian).

Valle A, Giamporcaro GM, Scavini M, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013 Jun;62(6):2072-2077. doi: 10.2337/db12-1345.

Salami F, Lee HS, Freyhult E, et al. Reduction in white blood cell, neutrophil, and red blood cell counts related to sex, HLA, and islet autoantibodies in Swedish TEDDY children at increased risk for type 1 diabetes. Diabetes. 2018 Nov;67(11):2329-2336. doi: 10.2337/db18-0355.

Zak KP, Orlenko VL, Popova VV, et al. The role of the immune system in mechanism of metformin therapeutic effect in patients with type 2 diabetes. Mìžnarodnij endokrinologìčnij žurnal. 2017;13(5):340-346. doi: 10.22141/2224-0721.13.5.2017.110024.

Zak KP, Popova VV, Gruzov MA, et al. Results of twenty years studies of immunity at preclinical asymptomatic phase of developing type 1 diabetes in children on the program IPDM: 1. Leukocyte composition and immune phenotype of blood lymphocytes. Endokrynologia. 2017;22(3):201-210. (in Russian).

Afanasyeva VV, Zak KP, Efimov AS. Blood monocytes in type 1 diabetes: electron-microscopic and ultra-cytochemical studies. Terapevticheskiy arkhiv. 1988;60(5):95-98. (in Russian).

Bradshaw EM, Raddassi K, Elyaman W, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol. 2009 Oct 1;183(7):4432-4439. doi: 10.4049/jimmunol.0900576.

Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes. 2006 Mar;55(3):774-779. doi: 10.2337/diabetes.55.03.06.db05-1417.

Ahmed S, Cerosaletti K, James E, et al. Standardizing T-cell biomarkers in type 1 diabetes: challenges and recent advances. Diabetes. 2019 Jul;68(7):1366-1379. doi: 10.2337/db19-0119.

Habib T, Long SA, Samuels PL, et al. Dynamic immune phenotypes of B and T helper cells mark distinct stages of T1D progression. Diabetes. 2019 Jun;68(6):1240-1250. doi: 10.2337/db18-1081.

Mathieu C, Lahesmaa R, Bonifacio E, Achenbach P, Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia. 2018 Nov;61(11):2252-2258. doi: 10.1007/s00125-018-4726-8.

Zak KP, Popova VV. The role of IL-17 in the pathogenesis of type 1 and type 2 diabetes mellitus in humans. Mìžnarodnij endokrinologìčnij žurnal. 2018;14(5):514-521. doi: 10.22141/2224-0721.14.5.2018.142690. (in Russian).

O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010 Feb 26;327(5969):1098-1102. doi: 10.1126/science.1178334.

Heuts F, Edner NM, Walker LSK. Follicular T helper cells: a new marker of type 1 diabetes risk? Diabetes. 2017 Feb;66(2):258-260. doi: 10.2337/dbi16-0062.

Viisanen T, Ihantola EL, Näntö-Salonen K, et al. Circulating CXCR5+PD-1+ICOS+ follicular T helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes. 2017 Feb;66(2):437-447. doi: 10.2337/db16-0714.

Hull CM, Peakman M, Tree TIM. Regulatory T cell dysfunction in type 1 diabetes: what’s broken and how can we fix it? Diabetologia. 2017 Oct;60(10):1839-1850. doi: 10.1007/s00125-017-4377-1.

Lee YH, Kim SR, Han DH, et al. Senescent T cells predict the development of hyperglycemia in humans. Diabetes. 2019 Jan;68(1):156-162. doi: 10.2337/db17-1218.

Khomenko BM, Gruzov MA, Shliakhovenko VS, Zak KP. The content and ultrastructure of blood CD4+ lymphocytes in healthy people and patients with type 1 diabetes. Fiziologichnyi Zhurnal. 1989;35(5):31-38. (in Russian).

Popova VV, Zak KP, Tronko ND. Contemporary ideas about pathophysiological mechanisms of immunity destruction in the preclinical stage of type 1 diabetes. Problemi endokrinnoi patologii. 2019;(69):136-143. (in Russian).

Chen YG, Cabrera SM, Jia S, et al. Molecular signatures differentiate immune states in type 1 diabetic families. Diabetes. 2014 Nov;63(11):3960-73. doi: 10.2337/db14-0214.

Gabbay MA, Sato MN, Duarte AJ, Dib SA. Serum titres of anti-glutamic acid decarboxylase-65 and anti-IA-2 autoantibodies are associated with different immunoregulatory milieu in newly diagnosed type 1 diabetes patients. Clin Exp Immunol. 2012 Apr;168(1):60-7. doi: 10.1111/j.1365-2249.2011.04538.x.

Hussain MJ, Peakman M, Gallati H, et al. Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia. 1996 Jan;39(1):60-9. doi: 10.1007/bf00400414.

Mandrup-Poulsen T. Interleukin-1 antagonism: a study companion for immune tolerance induction in type 1 diabetes? Diabetes. 2014 Jun;63(6):1833-5. doi: 10.2337/db14-0371.

Galassetti PR, Iwanaga K, Crisostomo M, Zaldivar FP, Larson J, Pescatello A. Inflammatory cytokine, growth factor and counterregulatory responses to exercise in children with type 1 diabetes and healthy controls. Pediatr Diabetes. 2006 Feb;7(1):16-24. doi: 10.1111/j.1399-543X.2006.00140.x.

Pham MN, Hawa MI, Pfleger C, et al. Pro- and anti-inflammatory cytokines in latent autoimmune diabetes in adults, type 1 and type 2 diabetes patients: Action LADA 4. Diabetologia. 2011 Jul;54(7):1630-1638. doi: 10.1007/s00125-011-2088-6.

Herold KC, Gitelman SE, Ehlers MR, et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes. 2013 Nov;62(11):3766-3774. doi: 10.2337/db13-0345.

Fores JP, Crisostomo LG, Orii NM, et al. Th17 pathway in recent-onset autoimmune diabetes. Cell Immunol. 2018 Feb;324:8-13. doi: 10.1016/j.cellimm.2017.11.005.

Feng S, Yu H, Yu Y, et al. Levels of inflammatory cytokines IL-1β, IL-6, IL-8, IL-17A, and TNF-α in aqueous humour of patients with diabetic retinopathy. J Diabetes Res. 2018 Apr 4;2018:8546423. doi: 10.1155/2018/8546423.

Milicic T, Lalic NM, Jotic A. CXCR3+, CCR4+T memory cells and chemokine levels: comparison between recent onset type 1 diabetics and nondiabetic first degree relatives. In: Abstracts of the 48th EASD Annual Meeting: Berlin, Germany, 1-5 October 2012. Diabetologia. 2012;55(Suppl 1):A-475. doi: 10.1007/s00125-012-2688-9.

Takahashi K, Masaya M, Takahashi T. Serum CXCL1 levels are elevated in subjects with type 1 diabetes mellitus and possibly reflect the rate of C-peptide loss. In: Abstracts of the EASD: Stockholm 2010. Diabetologia. 2010;53(Suppl 1):A-448. doi: 10.1007/s00125-010-1872-z.

Zak KP, Popova VV, Melnychenko SV, Mankovsky BN. The level of circulating cytokines and chemokines in the preclinical and early clinical stages of the development of type 1 diabetes. Terapevticheskiy arkhiv. 2010;82(10):147-153. (in Russian).

Popova VV, Zak KP. Chemokines for type 1 diabetes in humans (literature review and own data). Ukrainian Medical Journal. 2008;(68):1-14. (in Russian).

Eising S, Skogstrand K, Carstensen B. Elevated IL-4 levels at birth may predict type 1 diabetes mellitus. In: Abstracts of the 42nd EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia. 2006;49(Suppl 1)0234:147-148. doi: 10.1007/s00125-006-0358-5.

Hedman M, Ludvigsson J, Faresjö MK. Nicotinamide reduces high secretion of IFN-gamma in high-risk relatives even though it does not prevent type 1 diabetes. J Interferon Cytokine Res. 2006 Apr;26(4):207-213. doi:10.1089/jir.2006.26.207.

Sims EK, Evans-Molina C, Tersey SA, Eizirik DL, Mirmira RG. Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia. 2018 Nov;61(11):2259-2265. doi: 10.1007/s00125-018-4712-1.

Skyler JS. Prevention and reversal of type 1 diabetes - past challenges and future opportunities. Diabetes Care. 2015 Jun;38(6):997-1007. doi: 10.2337/dc15-0349.

Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016 Apr;59(4):679-682. doi: 10.1007/s00125-016-3873-z.

Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014 Jun;13(6):465-476. doi: 10.1038/nrd4275.

Pearson ER. Type 2 diabetes: a multifaceted disease. Diabetologia. 2019 Jul;62(7):1107-1112. doi: 10.1007/s00125-019-4909-y.

Pollack RM, Donath MY, LeRoith D, Leibowitz G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care. 2016 Aug;39 (Suppl 2):S244-252. doi: 10.2337/dcS15-3015.

Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017 Jul 19;18(8):826-831. doi: 10.1038/ni.3790.

Davies MJ, D'Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018 Dec;41(12):2669-2701. doi: 10.2337/dci18-0033.

Orlenko VL, Zak KP. Treatment with glucagon-like peptide-1 analogues - a breakthrough in diabetes mellitus type 2 therapy. Mìžnarodnij endokrinologìčnij žurnal. 2014;(60):112-117. doi: 10.22141/2224-0721.4.60.2014.76690. (in Russian).

Holst JJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-α-cell axis. Diabetes. 2017 Feb;66(2):235-240. doi: 10.2337/db16-0994.

Sun EW, de Fontgalland D, Rabbitt P, et al. Mechanisms controlling glucose-induced GLP-1 secretion in human small intestine. Diabetes. 2017 Aug;66(8):2144-2149. doi: 10.2337/db17-0058.

Achenbach P, Hawa MI, Krause S, et al. Autoantibodies to N-terminally truncated GAD improve clinical phenotyping of individuals with adult-onset diabetes: Action LADA 12. Diabetologia. 2018 Jul;61(7):1644-1649. doi: 10.1007/s00125-018-4605-3.

Oram RA, Patel K, Hill A, et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care. 2016 Mar;39(3):337-44. doi: 10.2337/dc15-1111.

Hawa MI, Kolb H, Schloot N, et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype. Diabetes Care. 2013 Apr;36(4):908-13. doi: 10.2337/dc12-0931.

Zak KP, Furmanova OV. Immune and anti-inflammatory factors in the mechanism of therapeutic effect of metformin in type 2 diabetes mellitus (analytical review including the results of own researches). Mìžnarodnij endokrinologìčnij žurnal. 2018;14(2):173-181. doi: 10.22141/2224-0721.14.2.2018.130564. (in Russian).

Marshall SM. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia. 2017 Sep;60(9):1561-1565. doi: 10.1007/s00125-017-4343-y.

Saienko YaA, Zak KP, Popova VV, Semionova TA. Leukocyte composition and immunophenotype of the blood lymphocytes in women with type 2 diabetes mellitus and obesity. Mìžnarodnij endokrinologìčnij žurnal. 2016;(77):13-19. doi: 10.22141/2224-0721.5.77.2016.78748. (in Russian).

Wannamethee SG, Papacosta O, Lawlor DA, et al. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia. 2012 Jan;55(1):80-87. doi: 10.1007/s00125-011-2284-4.

Arbel Y, Finkelstein A, Halkin A, et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis. 2012 Dec;225(2):456-460. doi: 10.1016/j.atherosclerosis.2012.09.009.

Tron’ko MD, Furmanova OV, Popova VV, et al. Anti-inflammatory and immune-mediated effects of metformin therapy in patients with type 2 diabetes. In: 54th EASD Annual Meeting of the European Association for the Study of Diabetes: Berlin, Germany, 1-5 October 2018. Diabetologia. 2018 Oct;61(Suppl 1):A-542. doi: 10.1007/s00125-018-4693-0.

Afanasyeva VV, Zak KP, Kondratska IM, Semionova TA. Content, ultrastructure and function of blood monocytes in patients with type 2 diabetes and metabolic syndrome. Endokrynologia. 2009;14(2):201-218. (in Ukrainian).

Zak KP, Mankovsky BN, Kondratska IN, et al. Immunity in patients with type 2 diabetes mellitus with concomitant metabolic syndrome/obesity. Communication 1. Composition of blood leukocytes, immunophenotype of lymphocytes, and ultrastructure of neutrophils. Endokrynologia. 2013;18(1):27-36. (in Russian).

Zak KP, Mankovsky BN, Melnichenko SV, et al. Immunity in patients with type 2 diabetes mellitus in complex with concomitant metabolic syndrome/obesity. Communication 2. Role of adipocytokines (interleukin-6, tumor necrosis factor alpha, leptin and adiponectin). Endokrynologia. 2013;18(2):26-32. (in Russian).

Bouter KP, Meyling FH, Hoekstra JB, et al. Influence of blood glucose levels on peripheral lymphocytes in patients with diabetes mellitus. Diabetes Res. 1992 Feb;19(2):77-80.

Stentz FB, Kitabchi AE. Activated T lymphocytes in type 2 diabetes: implications from in vitro studies. Curr Drug Targets. 2003 Aug;4(6):493-503. doi:10.2174/1389450033490966.

Carstensen M, Herder C, Kivimäki M, et al. Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study. Diabetes. 2010 May;59(5):1222-1227. doi: 10.2337/db09-1199.

Guarino D, Antonioli L, Fornai M, Pellegrinyi C, Blandizzi C, Anselmino M, et al. Diabetes, obesity and inflammation: persistence of elevated IL-1b after bariatric surgery. In: Abstracts of the 53rd EASD Annual Meeting of the European Association for the Study of Diabetes: Lisbon, Portugal, 11-15 September 2017. Diabetologia. 2017;60(Suppl 1):97. doi: 10.1007/s00125-017-4350-z.

Herder C, Brunner E, Tabak A. Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) precede, but do not prevent, the onset of type 2 diabetes (The Whitehall II Study). In: Minutes of The 43rd General Assembly of The European Association for The Study of Diabetes. Diabetologia. 2008;51(Suppl 1):313. doi: 10.1007/s00125-008-1117-6.

Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007 Apr 12;356(15):1517-1526. doi: 10.1056/NEJMoa065213.

Urwyler SA, Schuetz P, Ebrahimi F, Donath MY, Christ-Crain M. Interleukin-1 antagonism decreases cortisol levels in obese individuals. J Clin Endocrinol Metab. 2017 May 1;102(5):1712-1718. doi: 10.1210/jc.2016-3931.

Thorand B, Kolb H, Baumert J, et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes. 2005 Oct;54(10):2932-2938. doi: 10.2337/diabetes.54.10.2932.

Spranger J, Kroke A, Möhlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003 Mar;52(3):812-817. doi: 10.2337/diabetes.52.3.812.

Wang X, Bao W, Liu J, et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care. 2013 Jan;36(1):166-175. doi: 10.2337/dc12-0702.

Wueest S, Laesser CI, Böni-Schnetzler M, et al. IL-6-type cytokine signaling in adipocytes induces intestinal GLP-1 secretion. Diabetes. 2018 Jan;67(1):36-45. doi: 10.2337/db17-0637.

Kopecky J, Krusinova., Wohl P. Effect of 24-hour hypertriglyceridaemia on tumor necrosis factor alpha and resistin in type 2 diabetes and healthy subjects. In: Minutes of The 43rd General Assembly of The European Association for The Study of Diabetes. Diabetologia. 2008;51(Suppl 1):A-322. doi: 10.1007/s00125-008-1117-6.

Lindmark S, Burén J, Eriksson JW. Insulin resistance, endocrine function and adipokines in type 2 diabetes patients at different glycaemic levels: potential impact for glucotoxicity in vivo. Clin Endocrinol (Oxf). 2006 Sep;65(3):301-9. doi: 10.1111/j.1365-2265.2006.02593.x.

Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999 Jun;245(6):621-625. doi: 10.1046/j.1365-2796.1999.00490.x.

Monroy A, Kamath S, Chavez AO, et al. Impaired regulation of the TNF-a converting enzyme/tissue inhibitor of metalloproteinase 3 proteolytic system in skeletal muscle of obese type 2 diabetic patients: a new mechanism of insulin resistance in humans. Diabetologia. 2009 Oct;52(10):2169-2181. doi: 10.1007/s00125-009-1451-3.

Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. The ghrelin O-acyltransferase-ghrelin system reduces TNF-α-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia. 2012 Nov;55(11):3038-3050. doi: 10.1007/s00125-012-2671-5.

Kumar S, Wilson B, Watson L, Alsop J. Obesity is associated with poorer clinical outcomes following insulin initiation for patients with type 2 diabetes. In: Minutes of the 44th Genral Assembly of the European Association for the Study of Diabetes. Diabetologia. 2009;52(Suppl 1):1-550. doi: 10.1007/s00125-009-1445-1.

Nolan JJ, Færch K. Estimating insulin sensitivity and beta cell function: perspectives from the modern pandemics of obesity and type 2 diabetes. Diabetologia. 2012 Nov;55(11):2863-2867. doi: 10.1007/s00125-012-2684-0.

Tron’ko ND, Zak KP. Obesity and diabetes. Lik Sprava. 2013 Dec;(8):3-21. (in Russian).

Chen C, Shao Y, Wu X, Huang C, Lu W. Elevated interleukin-17 levels in patients with newly diagnosed type 2 diabetes mellitus. Biochem Physiol. 2016;(5):206. doi: 10.4172/2168-9652.1000206.

Fatima N, Faisal SM, Zubair S, Siddiqui SS, Moin S, Owais M. Emerging role of nterleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of type 2 Diabetes: association with age and gender in human subjects. Int J Biol Macromol. 2017 Dec;105(Pt 1):1279-1288. doi: 10.1016/j.ijbiomac.2017.07.155.

Furmanova OV, Muz NN, Popova VV, Sayenko YaA, Orlenko VL et al. Proinflammatory cytokines as biomarkers of effective therapy in patients with type 2 diabetes by metformin. In: Abstracts of the 55th EASD Annual Meeting: Barcelona, Spain, 16-20 September 2019. Diabetologia. 2019;62(Suppl 1):A-48. doi: 10.1007/s00125-019-4946-6.

Herder C, Baumert J, Thorand B, Martin S, Löwel H, Kolb H, Koenig W. Elevated systemic chemokine concentrations precede the incidence of coronary heart disease and type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984-2002. Arterioscler Thromb Vasc Biol. 2006 Sep;26(9):2147-2152. doi: 10.1161/01.ATV.0000235691.84430.86.

Müller S, Martin S, Koenig W, et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-α or its receptors. Diabetologia. 2002 Jun;45(6):805-812. doi: 10.1007/s00125-002-0829-2.

Ouwens DM, Bekaeri M, Lapauw B, Lehr S, Hartwig S, Herzfeld de Wiza D. Sex steroid-induced changes in circulating monocyte chemoattractant protein-1 levels may contribute to metabolic dysfunction in obese men. In: Abstracts of the 48th EASD Annual Meeting: Berlin, Germany, 1-5 October 2012. Diabetologia. 2012;55(Suppl 1):A-654. doi: 10.1007/s00125-012-2688-9.

Shah R, Hinkle CC, Ferguson JF, et al. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes. 2011 May;60(5):1512-1518. doi: 10.2337/db10-0956.

Zak KP, Kondratska IN, Melnychenko SV, Popova VV. The level of circulating IL-16 in the blood of patients with metabolic syndrome and type 2 diabetes. Lik sprava. 2007;(5-6):46-9. (in Russian).

Kondratska IN, Zak KP, Mankovsky BN. The level of circulating leptin in the blood in patients with metabolic syndrome and type 2 diabetes. Ukrainian Journal of Cardiology. 2009;(2):30-33. (in Russian).

Almuraikhy S, Kafienah W, Bashah M, et al. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance. Diabetologia. 2016 Nov;59(11):2406-2416. doi: 10.1007/s00125-016-4031-3.

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011 Feb;11(2):98-107. doi: 10.1038/nri2925.

Van der Weerd K, Dik WA, Schrijver B, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes. 2012 Feb;61(2):401-408. doi: 10.2337/db11-1065.

Womack J, Tien PC, Feldman J, et al. Obesity and immune cell counts in women. Metabolism. 2007;56(7):998-1004. doi: 10.1016/j.metabol.2007.03.008.

Chae JS, Paik JK, Kang R, et al. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr Res. 2013 Mar;33(3):195-203. doi: 10.1016/j.nutres.2013.01.005.



Leading Article