Role of Foxo1 gene expression in mechanism of antihypertrophic action of metformin in cardiomyocytes

N.V. Pasiechko, H.Ya. Loi, M.M. Korda, O.M. Oleshchuk


Background. Diabetic cardiomyopathy is the leading cause of mortality in patients with type 2 diabetes mellitus. Hypertrophy of cardiomyocytes is one of the main pathomorphological signs of diabetic cardiomyopathy development. Metformin, the first­line drug for the treatment of type 2 diabetes mellitus, along with hypoglycaemic effects, exerts cardioprotective effects. However, the mechanism of metformin action in cardiomyocytes remains unclear. The purpose of the study was to investigate the role of Foxo1 gene expression in the mechanism of antihypertrophic action of metformin in cardiomyocytes. Materials and methods. H9C2 cells were transfected with siRNA Fохо1 and siRNA negative control. Cells were deprived in 0% medium for 24 hours, treated with metformin (5mM) 30 min before cell stress, then put into hypoxic chamber for 16 hours and reoxygenated for 4 hours. Cell area was quantified using ImageJ. Knockdown efficiency was confirmed by real time polymerase chain reaction. Results. At the normal functioning of Fохо1 gene, metformin has the expressed antihypertrophic action under hypoxia. However, blocking Fохо1 gene expression deprives preparation of this effect and causes the hypertrophy of Н9С2 cells in all conditions of the experiment. Conclusions. The strong hypertrophic response in the group of H9C2 cells transfected with siRNA Foxo1 cultured under hypoxia with metformin treatment may be a result of following mechanisms: a) metformin prevents hypertrophy through Foxo1 pathway, thus, Foxo1 silencing totally blocked metformin protective effects on H9C2 hypertrophy; b) metformin protects against hypoxia independently of Foxo1 pathway, therefore, strong hypertrophy of metformin­treated cells incubated in hypoxia is the result of Foxo1 knockdown, a potent hypertrophic stimulus. Consequently, further investigations are still required to clarify the mechanisms by which metformin exerts its cardioprotective effects.


diabetic cardiomyopathy; hypertrophy; H9C2 cells; metformin; Fохо1


World Health Organization. Global report on diabetes. 2016. Available from: .

Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015 Jun 25;6(6):850-67. doi: 10.4239/wjd.v6.i6.850.

Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes. 2013 Oct 15;4(5):177-89. doi: 10.4239/wjd.v4.i5.177.

Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012 Sep;17(3):115-20.

Aneja A, Tang WW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008 Sep;121(9):748-57. doi: 10.1016/j.amjmed.2008.03.046.

Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C–mediated caspase-3 activation pathway. Diabetes. 2002 Jun;51(6):1938-48.

Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology. 2006 Dec;147(12):5967-74. doi: 10.1210/en.2006-0728.

Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006 Mar 17;98(5):596-605. doi: 10.1161/01.RES.0000207406.94146.c2.

Dorn GW 2nd, Robbins J, Sugden PH. Phenotyping hypertrophy: eschew obfuscation. Circ Res. 2003 Jun 13;92(11):1171-5. doi: 10.1161/01.RES.0000077012.11088.BC.

American Diabetes Association. 8, Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2018. Diabetes Care. 2018 Jan;41(Suppl 1):S73-S85. doi: 10.2337/dc18-S008.

Holman RR, Paul SK, Bethel MA, Matthews DR. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008 Oct 9;359(15):1577-89. doi: 10.1056/NEJMoa0806470.

Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012 Mar;122(6):253-70. doi: 10.1042/CS20110386.

Gunton JE, Delhanty PJ, Takahashi SI, Baxter RC. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J Clin Endocrinol Metab. 2003 Mar;88(3):1323-32. doi: 10.1210/jc.2002-021394.

Maida A, Lamont BJ, Cao X, Drucker DJ. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2011 Feb;54(2):339-49. doi: 10.1007/s00125-010-1937-z.

Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000 Dec;49(12):2063-9.

Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167-74. doi: 10.1172/JCI13505.

Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med. 2008 Dec;14(12):539-49. doi: 10.1016/j.molmed.2008.09.007.

Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005 Dec 9;310(5754):1642-6. doi: 10.1126/science.1120781.

Zheng J, Woo SL, Hu X, et al. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med. 2015 Jun;9(2):173-86. doi: 10.1007/s11684-015-0384-0.

Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem. 2011 Jan 7;286(1):1-11. doi: 10.1074/jbc.M110.121806.

Paiva MA, Gonçalves LM, Providência LA, Davidson SM, Yellon DM, Mocanu MM. Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther. 2010 Feb;24(1):25-32. doi: 10.1007/s10557-010-6222-3.

Xu X, Lu Z, Fassett J, et al. Metformin Protects Against Systolic Overload-Induced Heart Failure Independent of AMP-Activated Protein Kinase α2. Hypertension. 2014 Apr;63(4):723-8. doi: 10.1161/HYPERTENSIONAHA.113.02619.

Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 2013 Feb;14(2):83-97. doi: 10.1038/nrm3507.

Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011 Feb;47(2):125-31. doi: 10.1007/s11626-010-9368-1.

Koekemoer AL, Chong NW, Goodall AH, Samani NJ. Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Lett. 2009 Sep 3;583(17):2964-7. doi: 10.1016/j.febslet.2009.08.011.

Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: a new therapeutic target? Circulation. 2004 Apr 6;109(13):1580-9. doi: 10.1161/01.CIR.0000120390.68287.BB.

Iacobellis G, Ribaudo MC, Zappaterreno A, et al. Relationship of insulin sensitivity and left ventricular mass in uncomplicated obesity. Obes Res. 2003 Apr;11(4):518-24. doi: 10.1038/oby.2003.73.

Cha HN, Choi JH, Kim YW, Kim JY, Ahn MW, Park SY. Metformin inhibits isoproterenol-induced cardiac hypertrophy in mice. Korean J Physiol Pharmacol. 2010 Dec;14(6):377-84. doi: 10.4196/kjpp.2010.14.6.377.

Evans JM, Doney AS, AlZadjali MA, et al. Effect of Metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol. 2010 Oct 1;106(7):1006-10. doi: 10.1016/j.amjcard.2010.05.031.

Aguilar D, Chan W, Bozkurt B, Ramasubbu K, Deswal A. Metformin use and mortality in ambulatory patients with diabetes and heart failure. Circ Heart Fail. 2011 Jan;4(1):53-8. doi: 10.1161/CIRCHEARTFAILURE.110.952556.

Romero SP, Andrey JL, Garcia-Egido A, et al. Metformin therapy and prognosis of patients with heart failure and new-onset diabetes mellitus. A propensity-matched study in the community. Int J Cardiol. 2013 Jun 20;166(2):404-12. doi: 10.1016/j.ijcard.2011.10.141.

Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013 May;36(5):1304-11. doi: 10.2337/dc12-0719.

Lee JH, Kim JH, Kim JS, et al. AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F686-97. doi: 10.1152/ajprenal.00148.2012.

Hernández JS, Barreto‐Torres G, Kuznetsov AV, Khuchua Z, Javadov S. Crosstalk between AMPK activation and angiotensin II‐induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med. 2014 Apr;18(4):709-20. doi: 10.1111/jcmm.12220.

Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017 Aug;27(8):657-669. doi: 10.1016/j.numecd.2017.04.009.

Hu M, Ye P, Liao H, Chen M, Yang F. Metformin protects H9C2 cardiomyocytes from high-glucose and hypoxia/reoxygenation injury via inhibition of reactive oxygen species generation and inflammatory responses: role of AMPK and JNK. J Diabetes Res. 2016;2016:2961954. doi: 10.1155/2016/2961954.

Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, Zang M, Clements MA, Yan Y. New insight into metformin action: regulation of ChREBP and FOXO1 activities in endothelial cells. Mol Endocrinol. 2015 Aug;29(8):1184-94. doi: 10.1210/ME.2015-1090.

Kim YD, Park KG, Lee YS, et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase–dependent regulation of the orphan nuclear receptor SHP. Diabetes. 2008 Feb;57(2):306-14. doi: 10.2337/db07-0381.

Zou J, Hong L, Luo C, Li Z, et al. Metformin inhibits estrogen‐dependent endometrial cancer cell growth by activating the AMPK–FOXO 1 signal pathway. Cancer Sci. 2016 Dec;107(12):1806-1817. doi: 10.1111/cas.13083.

KandulaV, KosuruR, LiH, et al. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol. 2016 Mar 8;15:44. doi: 10.1186/s12933-016-0361-1.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© "Publishing House "Zaslavsky", 1997-2018


   Seo анализ сайта