DOI: https://doi.org/10.22141/2224-0721.14.6.2018.146077

Growth differentiation factor 11: general biological properties, metabolic effects and possible pathophysiological role in arterial hypertension, obesity, diabetes mellitus and age-dependent pathology (literature review)

S.M. Koval, D.K. Miloslavsky, I.O. Snihurskaya, V.V. Bozhko, M.Yu. Penkova, E.N. Shchenyavskaya

Abstract


The review presents modern literature data on the gene­ral biological properties of the growth factor differentiation 11 (GDF11), its involvement in embryogenesis, carcinogenesis, angiogenesis, aging and apoptosis, the differences between GDF11 and myostatin, prospects for the administration of recombinant GDF11, experimental studies on GDF11 effects in animals, options of clinical application of GDF11, its versatile action in cardiovascular diseases, involvement in thrombogenesis, use in dietology, sports medicine and transfusiology, the possibilities of gene therapy of the hypertensive heart and its potential targets.


Keywords


growth differentiation factor 11; recombinant growth differentiation factor 11; heroprotective and cardioprotective effects; hypertension; obesity; age-dependent patho­logy; hypertensive heart; gene therapy; review

References


Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013 Jul;31(7):1281-357. doi: 10.1097/01.hjh.0000431740.32696.cc.

Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018 May 15;71(19):e127-e248. doi: 10.1016/j.jacc.2017.11.006.

Zanchetti A. Obesity and other aspects of hypertension. J Hypertens. 2015 Mar;33(3):423-4. doi: 10.1097/HJH.0000000000000517.

Samorodskaja IV, Bolotova EY, Boytsov SA. Paradox of Obesity and Cardiovascular Mortality. Kardiologiia. 2015;55(9):31-36. (in Russian).

Belovol AN, Shkol'nik VV, Fadeenko GD, Tveretinov AB. Gipertonicheskaia bolezn' i ozhirenie: monografiia [Hypertension and obesity: monograph]. Ternopil: TSMU; 2013. 344 p. (in Russian).

Dautova MB, Bauyedimova AM, Osikbayeva SO, Zhurunova MS, Erlan AE. Cardiomarkers heart for prediction of cardiac vascular diseases in the experimental biology. Vestnik KazNMU. 2017;(2):239-243. (in Russian).

Khavinson VKh, Linkova NS, Morozova EA, Gutop EO, Elashkina EV. Molecular mechanisms of cardiovascular pathology. Uspehi fiziologičeskih nauk. 2014;45(3):57-65. (in Russian).

Ahmad T, Wang T, O'Brien EC, et al. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail. 2015 Jan;3(1):30-9. doi: 10.1016/j.jchf.2014.06.013.

Goletti S, Gruson D. Personalized risk assessment of heart failure patients: more perspectives from transforming growth factor super-family members. Clin Chim Acta. 2015 Mar 30;443:94-9. doi: 10.1016/j.cca.2014.09.014.

Hocking JC, Hehr CL, Chang RY, Johnston J, McFarlane S. TGFbeta ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Mol Cell Neurosci. 2008 Feb;37(2):247-60. doi: 10.1016/j.mcn.2007.09.011.

Williams G, Zentar MP, Gajendra S, Sonego M, Doherty P, Lalli G. Transcriptional basis for the inhibition of neural stem cell proliferation and migration by the TGFβ-family member GDF11. PLoS One. 2013 Nov 7;8(11):e78478. doi: 10.1371/journal.pone.0078478.

Andersson O, Reissmann E, Ibáñez CF. Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep. 2006 Aug;7(8):831-7. doi: 10.1038/sj.embor.7400752.

Funkenstein B, Olekh E. Growth/differentiation factor-11: an evolutionary conserved growth factor in vertebrates. Dev Genes Evol. 2010 Nov;220(5-6):129-37. doi: 10.1007/s00427-010-0334-4.

Stadnyk IV, Sanagurs’kyj DI. Changes in the genetic control of cells in the state of proliferation and differentiation. In: Biological Studies 2014: Collection of scientific papers of the V International Scientific and Practical Conference of Young Scientists and Students. Zhytomyr: Zhytomyr Ivan Franko State University; 2014. 289-292 pp. (in Ukrainian).

Bueno JL, Ynigo M, de Miguel C, et al. Growth differentiation factor 11 (GDF11) - a promising anti-ageing factor - is highly concentrated in platelets. Vox Sang. 2016 Nov;111(4):434-436. doi: 10.1111/vox.12438.

Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 Increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015 Jul 7;22(1):164-74. doi: 10.1016/j.cmet.2015.05.010.

Finkenzeller G, Stark GB, Strassburg S. Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells. J Surg Res. 2015 Sep;198(1):50-6. doi: 10.1016/j.jss.2015.05.001.

Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017 Apr;9(4):531-544. doi: 10.15252/emmm.201607231.

Harper SC, Brack A, MacDonnell S, et al. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? Circ Res. 2016 Apr 1;118(7):1143-50; discussion 1150. doi: 10.1161/CIRCRESAHA.116.307962.

Zhang Y, Wei Y, Liu D, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017 Aug 14;8(46):81604-81616. doi: 10.18632/oncotarget.20258.

Zimmers TA, Jiang Y, Wang M, et al. Erratum to: Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol. 2017 Sep;112(5):53. doi: 10.1007/s00395-017-0642-1.

Aksenova L. The age process of myocardial hypertrophy may be reversed. Available from: https://www.gazeta.ru/health/2013/05/08_a_5316401.shtml. Accessed: May 09, 2013. (in Russian).

Thomson H. Young blood really is the key to youth. Available from: https://www.newscientist.com/article/mg21628874-000-young-blood-really-is-the-key-to-youth/. Accessed: October 17, 2012.

Pertseva M. Hours of aging: reset, slow down, reverse? Available from: https://www.nkj.ru/archive/articles/26133/. (in Russian).

Tsyrenova B. About health - in youth. Available from: http://xn--80aacb0akh2bp7e.xn--p1ai/articles/media/2015/5/28/o-zdorove-smolodu/. Accessed: 2015, May 27. (in Russian).

Rubin LL, Wagers AJ, Lee RT, Katsimpardi L. Methods and compositions for increasing neurogenesis and angiogenesis. Patent US20160220640A1, 2016.

Katsimpardi L, Litterman NK,  Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014 May 9;344(6184):630-4. doi: 10.1126/science.1251141.

Jamaiyar A, Wan W, Janota DM, Enrick MK, Chilian WM, Yin L. The versatility and paradox of GDF 11. Pharmacol Ther. 2017 Jul;175:28-34. doi: 10.1016/j.pharmthera.2017.02.032.

Padyana AK, Vaidialingam B, Hayes DB, Gupta P, Franti M, Farrow NA. Crystal structure of human GDF11. Acta Crystallogr F Struct Biol Commun. 2016 Mar;72(Pt 3):160-4. doi: 10.1107/S2053230X16001588.

Pepinsky B, Gong BJ, Gao Y, et al. A Prodomain Fragment from the Proteolytic Activation of Growth Differentiation Factor 11 Remains Associated with the Mature Growth Factor and Keeps It Soluble. Biochemistry. 2017 Aug 22;56(33):4405-4418. doi: 10.1021/acs.biochem.7b00302.

Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther. 2015 Dec;156:26-33. doi: 10.1016/j.pharmthera.2015.10.006.

Vanbekbergen N, Hendrickx M, Leyns L. Growth differentiation factor 11 is an encephalic regionalizing factor in neural differentiated mouse embryonic stem cells. BMC Res Notes. 2014 Oct 29;7:766. doi: 10.1186/1756-0500-7-766.

Yang R, Fu S, Zhao L, et al. Quantitation of circulating GDF-11 and β2-MG in aged patients with age-related impairment in cognitive function. Clin Sci (Lond). 2017 Jul 7;131(15):1895-1904. doi: 10.1042/CS20171028.

Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 2016 Dec;23(1):1-18.doi: 10.1093/humupd/dmw039.

Hannan NR, Jamshidi P, Pera MF, Wolvetang EJ. BMP-11 and myostatin support undifferentiated growth of human embryonic stem cells in feeder-free cultures. Cloning Stem Cells. 2009 Sep;11(3):427-35. doi: 10.1089/clo.2009.0024.

Zhang Y, Shao J, Wang Z, et al. Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. Gene. 2015 Feb 25;557(2):209-14. doi: 10.1016/j.gene.2014.12.039.

Jin M, Song S, Guo L, Jiang T, Lin ZY. Increased serum GDF11 concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. Clin Exp Pharmacol Physiol. 2016 Nov;43(11):1145-1147. doi: 10.1111/1440-1681.12651.

Mei W, Xiang G, Li Y, et al. GDF11 Protects against Endothelial Injury and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Null Mice. Mol Ther. 2016 Nov;24(11):1926-1938. doi: 10.1038/mt.2016.160.

Liu W, Zhou L, Zhou C, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016 Sep 22;7:12794. doi: 10.1038/ncomms12794.

Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014 Apr;20(4):398-407. doi: 10.1038/nm.3468.

Chen JL, Walton KL, Al-Musawi SL, et al. Development of novel activin-targeted therapeutics. Mol Ther. 2015 Mar;23(3):434-44. doi: 10.1038/mt.2014.221.

Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, Krasney PA. Differential antagonism of activin, myostatin and growth and differentiation factor 11 by wild-type and mutant follistatin. Endocrinology. 2008 Sep;149(9):4589-95. doi: 10.1210/en.2008-0259.

Ravindra K, Jasbir S, Knopf J. Varianty, proiskhodiashchie iz ACTRIIB, i ikh primenenie [Variants derived from ACTRIIB and their use]. Patent № 18868, 2013. (in Russian).

Hong SK, Choo EH, Ihm SH, Chang K, Seung KB. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model. Metabolism. 2017 Nov;76:42-55. doi: 10.1016/j.metabol.2017.07.007.

Li H, Li Y, Xiang L, et al. GDF11 Attenuates Development of Type 2 Diabetes via Improvement of Islet β-Cell Function and Survival. Diabetes. 2017 Jul;66(7):1914-1927. doi: 10.2337/db17-0086.

Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK. GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development. 2004 Dec;131(24):6163-74. doi: 10.1242/dev.01535.

Dichmann DS, Yassin H, Serup P. Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn. 2006 Nov;235(11):3016-25. doi: 10.1002/dvdy.20953.

Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell. 2017 Nov 20;43(4):418-435.e13. doi: 10.1016/j.devcel.2017.10.027.

Yokoe T, Ohmachi T, Inoue H, et al. Clinical significance of growth differentiation factor 11 in colorectal cancer. Int J Oncol. 2007 Nov;31(5):1097-101.

Jing YY, Li D, Wu F, Gong LL, Li R. GDF11 does not improve the palmitate induced insulin resistance in C2C12. Eur Rev Med Pharmacol Sci. 2017 Apr;21(8):1795-1802.

Yu X, Chen X, Zheng XD, et al. Growth Differentiation Factor 11 Promotes Abnormal Proliferation and Angiogenesis of Pulmonary Artery Endothelial Cells. Hypertension. 2018 Apr;71(4):729-741. doi: 10.1161/HYPERTENSIONAHA.117.10350.

Huang L, Sayers RO. Monoklonal'nye antitela k miostatinu i ikh primeneniia [Monoclonal antibodies to myostatin and their use]. Patent № 15916, 2011. (in Russian).

Lee JH, Momani J, Kim YM, et al. Effective RNA-silencing strategy of Lv-MSTN/GDF11 gene and its effects on the growth in shrimp, Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol. 2015 Jan;179:9-16. doi: 10.1016/j.cbpb.2014.09.005.

Fan X, Gaur U, Sun L, Yang D, Yang M. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging. Mech Ageing Dev. 2017 Jun;164:108-112. doi: 10.1016/j.mad.2017.04.009.

McPherron AC, Huynh TV, Lee SJ. Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol. 2009 Mar 19;9:24. doi: 10.1186/1471-213X-9-24.

McPherron AC. Metabolic functions of myostatin and GDF11. Immunol Endocr Metab Agents Med Chem. 2010 Dec;10(4):217-231. doi: 10.2174/187152210793663810.

Pan C, Singh S, Sahasrabudhe DM, Chakkalakal JV, Krolewski JJ, Nastiuk KL. TGFβ Superfamily Members Mediate Androgen Deprivation Therapy-Induced Obese Frailty in Male Mice. Endocrinology. 2016 Nov;157(11):4461-4472. doi: 10.1210/en.2016-1580.

Walker RG, Czepnik M, Goebel EJ, et al. Structural basis for potency differences between GDF8 and GDF11. BMC Biol. 2017 Mar 3;15(1):19. doi: 10.1186/s12915-017-0350-1.

Poggioli T, Vujic A, Yang P, et al. Circulating Growth Differentiation Factor 11/8 Levels Decline With Age. Circulation research. 2016;118(1):29-37. doi:10.1161/CIRCRESAHA.115.307521.

Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J Biol Chem. 2008 Aug 29;283(35):23677-84. doi: 10.1074/jbc.M803025200.

Augustin H, Adcott J, Elliott CJH, Partridge L. Complex roles of myoglianin in regulating adult performance and lifespan. Fly (Austin). 2017 Oct 2;11(4):284-289. doi: 10.1080/19336934.2017.1369638.

Lee YS, Lee SJ. Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development. J Oral Med Pain. 2015 Sep;40(3):110-114.doi: 10.14476/jomp.2015.40.3.110.

Pèrié L, Parenté A, Brun C, Magnol L, Pélissier P, Blanquet V. Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep. 2016 Mar 3;6:39-46. doi: 10.1016/j.bbrep.2016.03.001.

Lee YS, Lee SJ. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3713-22. doi: 10.1073/pnas.1309907110.

Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res. 2016 Apr 1;118(7):1125-41; discussion 1142. doi: 10.1161/CIRCRESAHA.116.308391.

Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013 May 9;153(4):828-39. doi: 10.1016/j.cell.2013.04.015.

Bitto A, Kaeberlein M. Rejuvenation: it's in our blood. Cell Metab. 2014 Jul 1;20(1):2-4. doi: 10.1016/j.cmet.2014.06.007.

Brack AS. Ageing of the heart reversed by youthful systemic factors! EMBO J. 2013 Aug 14;32(16):2189-90. doi: 10.1038/emboj.2013.162.

Mei W, Xiang G, Li Y, et al. GDF11 Protects against Endothelial Injury and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Null Mice. Mol Ther. 2016 Nov;24(11):1926-1938. doi: 10.1038/mt.2016.160.

Villeda SA, Plambeck KE, Middeldorp J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014 Jun;20(6):659-63. doi: 10.1038/nm.3569.

Zhang M, Jadavji NM, Yoo HS, Smith PD. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice. Behav Brain Res. 2018 Apr 2;341:45-49. doi: 10.1016/j.bbr.2017.12.019.

McNally EM. Questions and Answers About Myostatin, GDF11, and the Aging Heart. Circ Res. 2016 Jan 8;118(1):6-8. doi: 10.1161/CIRCRESAHA.115.307861.

Sinha M, Jang YC, Oh J, et al. Restoring Systemic GDF11 Levels Reverses Age-Related Dysfunction in Mouse Skeletal Muscle. Science. 2014 May 9;344(6184):649-52. doi: 10.1126/science.1251152.

Myostatin GDF11growth differentiation factor 1 1 and IGF1 insulin-like growth factor IGF1. Available from: https://syroe.blogspot.com/2015/09/gdf11-1-1-igf1-1.html. Accessed: September 10, 2015. (in Russian).

Wagers AJ. The stem cell niche in regenerative medicine. Cell Stem Cell. 2012 Apr 6;10(4):362-9. doi: 10.1016/j.stem.2012.02.018.

Kuznik BI, Davydov SO, Stepanov AV, et al. "Protein of youth" GDF11, the state of the hemostasis system and blood flow characteristics in women suffering from hypertension. Tromboz, gemostaz i reologia. 2018;(73):39-46. doi: 10.25555/THR.2018.1.0822. (in Russian).

Kuznik BI, Davyidov SO, Stepanov AV, et al. The role of "proteins of youth and old age" in the development of hypercoagulation and blood flow characteristics in hypertensive disease. Vestnik gematologii. 2017;13(3):47-48. (in Russian).

Farley P. Patients with higher blood levels of growth factor have lower risk of cardiovascular problems. Available from: https://medicalxpress.com/news/2015-08-patients-higher-blood-growth-factor.html. Accessed: August 26, 2015.

Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013 May 9;153(4):828-39. doi: 10.1016/j.cell.2013.04.015.

Smith SC, Zhang X, Zhang X, et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ Res. 2015 Nov 6;117(11):926-32. doi: 10.1161/CIRCRESAHA.115.307527.

Khavinson VKh, Kuznik BI, Ryzhak GA, Linkova NS, Kozina LS, Sall TS. «Protein of senility» CCL11, «protein of juvenility» GDF11 and their role in age-related pathology. Uspehi gerontologii. 2016;29(5):722-731. (in Russian).

Khavinson VKh, Kuznik BI, Tarnovskaya SI, Linkova NS. GDF11 Protein as a General Geroprotector. Uspehi sovremennoy biologii. 2015;135(4):370-379. (in Russian).

Khavinson VKh, Kuznik BI, Tarnovskaya SI, Linkova NS. GDF11 Protein as a Geroprotector. Biology Bulletin Reviews. 2016;6(2):141-148. doi: 10.1134/S207908641602002X.

Kuznik BI, Khavinson VKh, Davydov SO, Stepanov AV. Belki molodosti i starosti: monografiia [Proteins of youth and old age: monograph]. Saarbrücken: Palmarium Academic Publishing; 2017. 284 p. (in Russian).

Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and Myostatin in Human Aging and Cardiovascular Disease. Cell Metab. 2016 Jun 14;23(6):1207-1215. doi: 10.1016/j.cmet.2016.05.023.

Abisheva ZS, Zhurunova MS, Zhetpisbaeva GD. Effect of protein GDF11 (growth differentiation factor-11) on the organism. Vestnik KazNMU. 2017;(2):227-229. (in Russian).

Shvangiradze TA, Bondarenko IZ, Troshina EA, Nikankina LV, Khuharenko SS, Shestakova MV. TGF-β and FRF-21: association with IHD in patients with type 2 diabetes and obesity. Obesity and Metabolism. 2017;14(3):38-42. doi: 10.14341/OMET2017338-42. (in Russian).

Pertseva TO, Myhailichenko DS. Serum level of transforming growth factor-β1 in patients with chronic obstructive pulmonary disease and its correlation with clinical and functional indices. Ukr Pulmonol J. 2016;(4):33-36. (in Ukrainian).

Pushkareva AE, Khusainova RI, Valiev RR, Khusnutdinova EK. The study of growth factor receptor expression and gene structure of the transforming growth factor in head failure. Mezdunarodnyj naucno-issledovatelʹskij zurnal. 2016;(51):69-77. doi: 10.18454/IRJ.2016.51.046. (in Russian).

Stepanov AV, Davydov SO, Stepanov EV. The role of the protein GDF11 in the development of a hypercoagulable state in hypertension. In: Guliaev GIu, editor. World science: problems and innovations: Collection of scientific papers of the XIII International Scientific Practical Conference. Part 1. Pеnza: Nauka i prosveshchenie; 2017. 177-179 pp. (in Russian).

Sikhra D, Pirsall RS, Kumar R. Kombinirovannoe primenenie lovushek GDF i aktivatorov retseptorov eritropoetina dlia povysheniia soderzhaniia eritrotsitov [Combined application of traps of GDF and erythropoietin receptor activators for increasing erythrocyte content]. Patent RU № 2 592 670 C2, 2010. (in Russian).

Yamagishi S, Matsui T, Kurokawa Y, Fukami K. Serum Levels of Growth Differentiation Factor 11 Are Independently Associated with Low Hemoglobin Values in Hemodialysis Patients. Biores Open Access. 2016 Jun 1;5(1):155-8. doi: 10.1089/biores.2016.0015.

Dziak GV, Vasilenko AM, Potabashnii VA, Sheiko SA, Vasilenko VA. Hypertensive heart disease. Why do therapists and cardiologists reduce this international interpretation of heart damage in patients with arterial hypertension to only three letters - LVH? Zdorov’ja Ukrai'ny. Kardiologija, Revmatologija, Kardiohirurgija. 2015;(41):18-20. (in Russian).

Drazner МН. The progression of hypertensive heart disease. Circulation. 2011 Jan 25;123(3):327-34. doi: 10.1161/CIRCULATIONAHA.108.845792.

Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert Rev Cardiovasc Ther. 2011 Feb;9(2):199-209. doi: 10.1586/erc.10.190.

Struijker-Boudier HAJ. Structural cardiovascular changes in hypertension. In: Agabiti-Rosei E, Baguet JP, Beckett NS, et al, authors; Mancia G, Grassi G, Redon J, editors. Manual of Hypertension of the European Society of Hypertension. 2nd ed. Boca Raton, FL: CRC Press; 2014. 129-134 pp.

Minushkina LO, Nikitin AG, Brazhnik VA, Brovkin AN, Nosikov VV, Zateishchikov DA. Myocardial hypertrophy in patients with hypertensive disease: the role of genetic polymorphism of β-adrenoreactive structures. Kardiologiia. 2010;(1):9-15. (in Russian).

Falkner B, Keith SW, Gidding SS, Langman CB. Fibroblast growth factor-23 is independently associated with cardiac mass in African-American adolescent males. J Am Soc Hypertens. 2017 Aug;11(8):480-487. doi: 10.1016/j.jash.2017.04.001.

Kuznik BI, Khavinson VKh, Linkova NS, Ryzhak GA, Sall TS, Trofimova SV. Growth factors of fibroblasts FGF19, FGF21, FGF23 as endocrine regulators of physiological functions and geroprotectors. Epigenetic mechanisms of regulation. Uspehi sovremennoj biologii. 2017;137(1):84-99. (in Russian).

Catena C, Colussi G, Valeri M, Sechi LA. Association of aldosterone with left ventricular mass in hypertension: interaction with plasma fibrinogen levels. Am J Hypertens. 2013 Jan;26(1):111-7. doi: 10.1093/ajh/hps006.

Mendelsohn AR, Larrick JW. Rejuvenation of aging hearts. Rejuvenation Res. 2013 Aug;16(4):330-2. doi: 10.1089/rej.2013.1462.

Zhao Y, Liu G, Zambito FC, Zhang YJ, DeSilva BS, Kozhich AT, Shen JX. A multiplexed immunocapture liquid chromatography tandem mass spectrometry assay for the simultaneous measurement of myostatin and GDF-11 in rat serum using an automated sample preparation platform. Anal Chim Acta. 2017 Aug 1;979:36-44. doi: 10.1016/j.aca.2017.04.028.

Olson KA, Beatty AL, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-aging factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts. Eur Heart J. 2015 Dec 21;36(48):3426-34. doi: 10.1093/eurheartj/ehv385.

Tutelian VA, Khavinson VKh, Ryzhak GA, Linkova NS. Short Peptides as Components of Nutrition: Molecular Bases of Gomeostasis Regulation. Uspehi sovremennoj biologii. 2014;134(3):227-235. (in Russian).

Rupp R. The Search for immortality in food. Available from: https://www.nationalgeographic.com/people-and-culture/food/the-plate/2014/10/30/immortality-food-diet-for-a-long-life/. Accessed: October 30, 2014.

Donskov SI, Iagodinskii VN. Nasledie i posledovateli AA Bogdanova v sluzhbe krovi [Heritage and followers of AA Bogdanov in the blood service]. Moscow; 2008. 312 p. (in Russian).

Aires R, Jurberg AD, Leal F, Nóvoa A, Cohn MJ, Mallo M. Oct4 Is a Key Regulator of Vertebrate Trunk Length Diversity. Dev Cell. 2016 Aug 8;38(3):262-74. doi: 10.1016/j.devcel.2016.06.021.

Gene therapy of hypertensive heart and its potential targets. Available from: http://vechnayamolodost.ru. (in Ukrainian).

A Short List of Potential Target Genes for Near-Future Gene Therapies Aimed at Slowing Aging or Compensating for Age-Related Damage and Decline. Available from: https://www.fightaging.org/archives/2016/06/a-short-list-of-potential-target-genes-for-near-future-gene-therapies-aimed-at-slowing-aging-or-compensating-for-age-related-damage-and-decline/. Accessed: June 6, 2016.

Radkowski P, Wątor G, Skupien J, Bogdali A, Wołkow P. Analysis of gene expression to predict dynamics of future hypertension incidence in type 2 diabetic patients. BMC Proc. 2016 Oct 18;10(Suppl 7):113-117. doi: 10.1186/s12919-016-0015-z.

Jeanplong F, Falconer SJ, Oldham JM, Maqbool NJ, Thomas M, Hennebry A, McMahon CD. Identification and expression of a novel transcript of the growth and differentiation factor-11 gene. Mol Cell Biochem. 2014 May;390(1-2):9-18. doi: 10.1007/s11010-013-1949-3.

Moskalev AA, Proshkina EN, Belyi AA, Solovyev IA. Genetics of aging and longevity. Vavilovskij žurnal genetiki i selekcii. 2016;20(4):426-440. doi: 10.18699/VJ16.171. (in Russian).

Nefedova NA, Davydova SYu. The role of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF) in tumor angiogenesis. Sovremennye problemy nauki i obrazovaniâ. 2015;(3):51. (in Russian).

Fahy GM. Is the End of Aging near at Hand? Available from: http://www.lifeextension.com/Lpages/2016/CRISPR/index.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2018

 

   Seo анализ сайта