The role of IL-17 in the pathogenesis of type 1 and type 2 diabetes mellitus in humans

Main Article Content

K.P. Zak
V.V. Popova


The paper analyzes the latest publications on the biological and pathogenetic role of the recently discovered pro-inflammatory cytokine IL-17 secreted by the Th17 CD4+ T-cell clone in a healthy and ill persons. Given data indicate the key role of IL-17 in the pathogenesis of the majority of autoimmune diseases, especially type 1 and type 2 diabetes mellitus. Increased percentage of Th17 cells in the body and elevated level of the cytokine IL-17 is typical for patients with diabetes mellitus both type 1 and type 2. In addition, there is another subpopulation of CD4+ T-cells — CD4+CD25+FoxP3+ lymphocytes, called T-regulatory cells (Treg), inhibiting Th17 cells, and thus preventing the development of diabetes mellitus. Based on these data, a hypothesis of a balance between these two subpopulations of CD4+ T-cells in the body of a healthy person has been suggested. In diabetes mellitus an imbalance between Th17 and Treg cells develops in the direction of increasing the Th17 cell content and IL-17 level, which is accompanied by a syngeneic elevation in Th1 CD4+ T-proinflammatory cytokines. Obtaining more complete information on the properties of IL-17 in the future is of great importance for the development of new scientifically valid methods for the prevention and therapy of diabetes mellitus and other autoimmune diseases.

Article Details

How to Cite
Zak, K., and V. Popova. “The Role of IL-17 in the Pathogenesis of Type 1 and Type 2 Diabetes Mellitus in Humans”. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine), vol. 14, no. 5, Oct. 2018, pp. 514-21, doi:10.22141/2224-0721.14.5.2018.142690.
Literature Review


Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123-32. doi: 10.1038/ni1254.

Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133-41. doi: 10.1038/ni1261.

Sabat R, Witte E, Witte K, Wolk K. IL-22 and IL-17: An overview. In: Valérie Quesniaux V, Bernhard Ryffel B, Franco Padova F, editors. IL-17, IL-22 and their producing cells: Role in inflammation and autoimmunity. Progress in Inflammation Research. Springer, Basel; 2013. 11-35 p. doi: 10.1007/978-3-0348-0522-3_2.

Li Y, Liu Y, Chu CQ. Th17 Cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Mediators Inflamm. 2015;2015:638470. doi: 10.1155/2015/638470.

O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010 Feb 26;327(5969):1098-102. doi: 10.1126/science.1178334.

Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018 May;101:287-292. doi: 10.1016/j.biopha.2018.02.103.

Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 2017 Jul 14;6(7). pii: E68. doi: 10.3390/jcm6070068.

Kumar P, Subramaniyam G. Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes. Cytokine. 2015 Feb;71(2):366-76. doi: 10.1016/j.cyto.2014.10.010.

Zak KP, Tron'ko ND, Popova VV, Butenko AK. Diabetes mellitus, Immunity, Cytokines. Kyiv: Kniga plyus; 2015. 485 p. (in Ukrainian).

Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, et al. Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol. 2010 Oct 1;185(7):3814-8. doi: 10.4049/jimmunol.1001860.

Ferraro A, Socci C, Stabilini A, et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes. 2011 Nov;60(11):2903-13. doi: 10.2337/db11-0090.

Martin-Orozco N, Chung Y, Chang SH, Wang Y-H, Dong Ch. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol. 2009 Jan;39(1):216-24. doi: 10.1002/eji.200838475.

Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, Shapiro AM. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009 Jun;58(6):1302-11. doi: 10.2337/db08-1113.

Kuriya G, Uchida T, Akazawa S, et al. Double deficiency in IL-17 and IFN-г signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia. 2013 Aug;56(8):1773-80. doi: 10.1007/s00125-013-2935-8.

Bending D, De la Peсa H, Veldhoen M, et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest. 2009 Mar;119(3):565-72. doi: 10.1172/JCI37865.

Vukkadapu SS, Belli JM, Ishii K, et al. Dynamic interaction between T cell-mediated beta-cell damage and beta-cell repair in the run up to autoimmune diabetes of the NOD mouse. Physiol Genomics. 2005 Apr 14;21(2):201-11. doi: 10.1152/physiolgenomics.00173.2004. 

Tong Z, Liu W, Yan H, Dong Ch. Interleukin-17A deficiency ameliorates streptozotocin-induced diabetes. Immunology. 2015 Oct;146(2):339-46. doi: 10.1111/imm.12512.

Azuma MM, Gomes-Filho JE, Prieto AKC, et al. Diabetes increases interleukin-17 levels in periapical, hepatic, and renal tissues in rats. Arch Oral Biol. 2017 Nov;83:230-235. doi: 10.1016/j.archoralbio.2017.08.001.

Fores JP, Crisostomo LG, Orii NM, et al. Th17 pathway in recent-onset autoimmune diabetes. Cell Immunol. 2018 Feb;324:8-13. doi: 10.1016/j.cellimm.2017.11.005.

Roohi A, Tabrizi M, Abbasi F, et al. Serum IL-17, IL-23, and TGF-в levels in type 1 and type 2 diabetic patients and age-matched healthy controls. Biomed Res Int. 2014;2014:718946. doi: 10.1155/2014/718946.

Bradshaw EM, Raddassi K, Elyaman W, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol. 2009 Oct 1;183(7):4432-9. doi: 10.4049/jimmunol.0900576.

Honkanen J, Nieminen JK, Gao R, et al. IL-17 immunity in human type 1 diabetes. J Immunol. 2010 Aug 1;185(3):1959-67. doi: 10.4049/jimmunol.1000788.

Honkanen JK, Nieminen JK, Skarsvik S, et al. Coxsackievirus up-regulates IL-17 immunity in human type 1 diabetes: A-421. In: Abstracts of the 47th Annual Meeting of the EASD, Lisbon 2011. Diabetologia. 2011;54(Suppl 1):S1-S542. doi: 10.1007/s00125-011-2276-4.

Arif S, Moore F, Marks K, et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated в-cell death. Diabetes. 2011 Aug;60(8):2112-9. doi: 10.2337/db10-1643.

Zak KP, Furmanova OV. Immune and anti-inflammatory factors in the mechanism of therapeutic effect of metformin in type 2 diabetes mellitus (analytical review including the results of own researches) Mìžnarodnij endokrinologìčnij žurnal. 2018;14(2):173-181. doi: 10.22141/2224-0721.14.2.2018.130564 (in Ukrainian).

Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes - considerations for attempts to prevent and reverse the disease. Diabetes Care. 2015 Jun;38(6):979-88. doi: 10.2337/dc15-0144.

Espes D, Singh K, Sandler S, Carlsson PO. Increased interleukin-35 levels in patients with type 1 diabetes with remaining C-peptide. Diabetes Care. 2017 Aug;40(8):1090-1095. doi: 10.2337/dc16-2121.

Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression. Cell Signal. 2014 Mar;26(3):528-39. doi: 10.1016/j.cellsig.2013.11.031.

Mandrup-Poulsen T. Interleukin-1 antagonism: a study companion for immune tolerance induction in type 1 diabetes? Diabetes. 2014 Jun;63(6):1833-5. doi: 10.2337/db14-0371.

Rabinovich A, Suarez-Pinzon WL. Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys. 2007;48(2-3):159-63.

Tripathi D, Cheekatla SS, Paidipally P, et al. c-Jun N-terminal kinase 1 defective CD4+CD25+FoxP3+ cells prolong islet allograft survival in diabetic mice. Sci Rep. 2018 Feb 19;8(1):3310. doi: 10.1038/s41598-018-21477-9.

Hua J, Inomata T, Chen Y, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018 May 4;8(1):7059. doi: 10.1038/s41598-018-25384-x.

Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006 May 11;441(7090):235-8. doi: 10.1038/nature04753.

Fatima N, Faisal SM, Zubair S, Siddiqui SS, Moin S, Owais M. Emerging role of Interleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of type 2 diabetes: Association with age and gender in human subjects. Int J Biol Macromol. 2017 Dec;105(Pt 1):1279-1288. doi: 10.1016/j.ijbiomac.2017.07.155.

Chen C, Shao Y, Wu X, Huang C, Lu W. Elevated interleukin-17 levels in patients with newly diagnosed type 2 diabetes mellitus. Biochem Physiol. 2016;5(206):2-10.  doi: 10.4172/2168-9652.1000206.

Sunandhakumari JV, Sadasivan A, Koshi E, Krishna A, Alim A, Sebastian A. Effect of nonsurgical periodontal therapy on plasma levels of IL-17 in chronic periodontitis patients with well controlled type-II diabetes mellitus – a clinical study. Dent J (Basel). 2018 Jun 13;6(2). pii: E19. doi: 10.3390/dj6020019.

Zhang C, Xiao C, Wang P, et al. The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Hum Immunol. 2014 Apr;75(4):289-96. doi: 10.1016/j.humimm.2014.02.007.

Ohshima K, Mogi M, Jing F, et al. Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance. Hypertension. 2012 Feb;59(2):493-9. doi: 10.1161/HYPERTENSIONAHA.111.183178.

Borilova Linhartova P, Kastovsky J, Lucanova S, et al. Interleukin-17A gene variability in patients with type 1 diabetes mellitus and chronic periodontitis: Its correlation with IL-17 levels and the occurrence of Periodontopathic Bacteria. Mediators Inflamm. 2016;2016:2979846. doi: 10.1155/2016/2979846.

Miranda TS, Heluy SL, Cruz DF, et al. The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit. Clin Oral Investig. 2018 May 8. doi: 10.1007/s00784-018-2471-5. [Epub ahead of print].

Tron'ko ND, Zak KP. Obesity and diabetes. Likars'ka sprava. 2013;8(1125):3-21. (in Ukrainian).

Kumar S, Wilson B, Watson L, Alsop J. Obesity is associated with poorer clinical outcomes following insulin initiation for patients with type 2 diabetes. In: Minutes of the 44th Genral Assembly of the European Association for the Study of Diabetes. Diabetologia. 2009;52(Suppl 1):S1-S550. doi: 10.1007/s00125-009-1445-1.

Zak KP, Mankovsky BN, Melnichenko, SV, et al. Immunity in patients with type 2 diabetes mellitus in complex with concomitant metabolic syndrome/obesity - Communication 2: Role of adipocytokines (interleukin-6, tumor necrosis factor alpha, leptin and adiponectin). Endokrynologia. 2013;18(2):26-32. (in Russian).

Tsai S, Clemente-Casares X, Revelo XS, Winer Sh, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes. 2015 Jun;64(6):1886-97. doi: 10.2337/db14-1488.

Donath MY, Hess C, Palmer E. What is the role of autoimmunity in type 1 diabetes? A clinical perspective. Diabetologia. 2014 Apr;57(4):653-5. doi: 10.1007/s00125-013-3153-0.

Most read articles by the same author(s)