DOI: https://doi.org/10.22141/2224-0721.14.5.2018.142690

The role of IL-17 in the pathogenesis of type 1 and type 2 diabetes mellitus in humans

K.P. Zak, V.V. Popova

Abstract


The paper analyzes the latest publications on the biological and pathogenetic role of the recently discovered pro-inflammatory cytokine IL-17 secreted by the Th17 CD4+ T-cell clone in a healthy and ill persons. Given data indicate the key role of IL-17 in the pathogenesis of the majority of autoimmune diseases, especially type 1 and type 2 diabetes mellitus. Increased percentage of Th17 cells in the body and elevated level of the cytokine IL-17 is typical for patients with diabetes mellitus both type 1 and type 2. In addition, there is another subpopulation of CD4+ T-cells — CD4+CD25+FoxP3+ lymphocytes, called T-regulatory cells (Treg), inhibiting Th17 cells, and thus preventing the development of diabetes mellitus. Based on these data, a hypothesis of a balance between these two subpopulations of CD4+ T-cells in the body of a healthy person has been suggested. In diabetes mellitus an imbalance between Th17 and Treg cells develops in the direction of increasing the Th17 cell content and IL-17 level, which is accompanied by a syngeneic elevation in Th1 CD4+ T-proinflammatory cytokines. Obtaining more complete information on the properties of IL-17 in the future is of great importance for the development of new scientifically valid methods for the prevention and therapy of diabetes mellitus and other autoimmune diseases.

Keywords


type1 and type 2 diabetes mellitus; IL-17

References


Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123-32. doi: 10.1038/ni1254.

Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133-41. doi: 10.1038/ni1261.

Sabat R, Witte E, Witte K, Wolk K. IL-22 and IL-17: An overview. In: Valérie Quesniaux V, Bernhard Ryffel B, Franco Padova F, editors. IL-17, IL-22 and their producing cells: Role in inflammation and autoimmunity. Progress in Inflammation Research. Springer, Basel; 2013. 11-35 p. doi: 10.1007/978-3-0348-0522-3_2.

Li Y, Liu Y, Chu CQ. Th17 Cells in type 1 diabetes: role in the pathogenesis and regulation by gut microbiome. Mediators Inflamm. 2015;2015:638470. doi: 10.1155/2015/638470.

O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010 Feb 26;327(5969):1098-102. doi: 10.1126/science.1178334.

Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018 May;101:287-292. doi: 10.1016/j.biopha.2018.02.103.

Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 2017 Jul 14;6(7). pii: E68. doi: 10.3390/jcm6070068.

Kumar P, Subramaniyam G. Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes. Cytokine. 2015 Feb;71(2):366-76. doi: 10.1016/j.cyto.2014.10.010.

Zak KP, Tron'ko ND, Popova VV, Butenko AK. Diabetes mellitus, Immunity, Cytokines. Kyiv: Kniga plyus; 2015. 485 p. (in Ukrainian).

Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, et al. Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol. 2010 Oct 1;185(7):3814-8. doi: 10.4049/jimmunol.1001860.

Ferraro A, Socci C, Stabilini A, et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes. 2011 Nov;60(11):2903-13. doi: 10.2337/db11-0090.

Martin-Orozco N, Chung Y, Chang SH, Wang Y-H, Dong Ch. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol. 2009 Jan;39(1):216-24. doi: 10.1002/eji.200838475.

Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, Shapiro AM. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes. 2009 Jun;58(6):1302-11. doi: 10.2337/db08-1113.

Kuriya G, Uchida T, Akazawa S, et al. Double deficiency in IL-17 and IFN-г signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia. 2013 Aug;56(8):1773-80. doi: 10.1007/s00125-013-2935-8.

Bending D, De la Peсa H, Veldhoen M, et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest. 2009 Mar;119(3):565-72. doi: 10.1172/JCI37865.

Vukkadapu SS, Belli JM, Ishii K, et al. Dynamic interaction between T cell-mediated beta-cell damage and beta-cell repair in the run up to autoimmune diabetes of the NOD mouse. Physiol Genomics. 2005 Apr 14;21(2):201-11. doi: 10.1152/physiolgenomics.00173.2004. 

Tong Z, Liu W, Yan H, Dong Ch. Interleukin-17A deficiency ameliorates streptozotocin-induced diabetes. Immunology. 2015 Oct;146(2):339-46. doi: 10.1111/imm.12512.

Azuma MM, Gomes-Filho JE, Prieto AKC, et al. Diabetes increases interleukin-17 levels in periapical, hepatic, and renal tissues in rats. Arch Oral Biol. 2017 Nov;83:230-235. doi: 10.1016/j.archoralbio.2017.08.001.

Fores JP, Crisostomo LG, Orii NM, et al. Th17 pathway in recent-onset autoimmune diabetes. Cell Immunol. 2018 Feb;324:8-13. doi: 10.1016/j.cellimm.2017.11.005.

Roohi A, Tabrizi M, Abbasi F, et al. Serum IL-17, IL-23, and TGF-в levels in type 1 and type 2 diabetic patients and age-matched healthy controls. Biomed Res Int. 2014;2014:718946. doi: 10.1155/2014/718946.

Bradshaw EM, Raddassi K, Elyaman W, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol. 2009 Oct 1;183(7):4432-9. doi: 10.4049/jimmunol.0900576.

Honkanen J, Nieminen JK, Gao R, et al. IL-17 immunity in human type 1 diabetes. J Immunol. 2010 Aug 1;185(3):1959-67. doi: 10.4049/jimmunol.1000788.

Honkanen JK, Nieminen JK, Skarsvik S, et al. Coxsackievirus up-regulates IL-17 immunity in human type 1 diabetes: A-421. In: Abstracts of the 47th Annual Meeting of the EASD, Lisbon 2011. Diabetologia. 2011;54(Suppl 1):S1-S542. doi: 10.1007/s00125-011-2276-4.

Arif S, Moore F, Marks K, et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated в-cell death. Diabetes. 2011 Aug;60(8):2112-9. doi: 10.2337/db10-1643.

Zak KP, Furmanova OV. Immune and anti-inflammatory factors in the mechanism of therapeutic effect of metformin in type 2 diabetes mellitus (analytical review including the results of own researches) Mìžnarodnij endokrinologìčnij žurnal. 2018;14(2):173-181. doi: 10.22141/2224-0721.14.2.2018.130564 (in Ukrainian).

Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes - considerations for attempts to prevent and reverse the disease. Diabetes Care. 2015 Jun;38(6):979-88. doi: 10.2337/dc15-0144.

Espes D, Singh K, Sandler S, Carlsson PO. Increased interleukin-35 levels in patients with type 1 diabetes with remaining C-peptide. Diabetes Care. 2017 Aug;40(8):1090-1095. doi: 10.2337/dc16-2121.

Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression. Cell Signal. 2014 Mar;26(3):528-39. doi: 10.1016/j.cellsig.2013.11.031.

Mandrup-Poulsen T. Interleukin-1 antagonism: a study companion for immune tolerance induction in type 1 diabetes? Diabetes. 2014 Jun;63(6):1833-5. doi: 10.2337/db14-0371.

Rabinovich A, Suarez-Pinzon WL. Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biochem Biophys. 2007;48(2-3):159-63.

Tripathi D, Cheekatla SS, Paidipally P, et al. c-Jun N-terminal kinase 1 defective CD4+CD25+FoxP3+ cells prolong islet allograft survival in diabetic mice. Sci Rep. 2018 Feb 19;8(1):3310. doi: 10.1038/s41598-018-21477-9.

Hua J, Inomata T, Chen Y, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep. 2018 May 4;8(1):7059. doi: 10.1038/s41598-018-25384-x.

Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006 May 11;441(7090):235-8. doi: 10.1038/nature04753.

Fatima N, Faisal SM, Zubair S, Siddiqui SS, Moin S, Owais M. Emerging role of Interleukins IL-23/IL-17 axis and biochemical markers in the pathogenesis of type 2 diabetes: Association with age and gender in human subjects. Int J Biol Macromol. 2017 Dec;105(Pt 1):1279-1288. doi: 10.1016/j.ijbiomac.2017.07.155.

Chen C, Shao Y, Wu X, Huang C, Lu W. Elevated interleukin-17 levels in patients with newly diagnosed type 2 diabetes mellitus. Biochem Physiol. 2016;5(206):2-10.  doi: 10.4172/2168-9652.1000206.

Sunandhakumari JV, Sadasivan A, Koshi E, Krishna A, Alim A, Sebastian A. Effect of nonsurgical periodontal therapy on plasma levels of IL-17 in chronic periodontitis patients with well controlled type-II diabetes mellitus – a clinical study. Dent J (Basel). 2018 Jun 13;6(2). pii: E19. doi: 10.3390/dj6020019.

Zhang C, Xiao C, Wang P, et al. The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Hum Immunol. 2014 Apr;75(4):289-96. doi: 10.1016/j.humimm.2014.02.007.

Ohshima K, Mogi M, Jing F, et al. Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance. Hypertension. 2012 Feb;59(2):493-9. doi: 10.1161/HYPERTENSIONAHA.111.183178.

Borilova Linhartova P, Kastovsky J, Lucanova S, et al. Interleukin-17A gene variability in patients with type 1 diabetes mellitus and chronic periodontitis: Its correlation with IL-17 levels and the occurrence of Periodontopathic Bacteria. Mediators Inflamm. 2016;2016:2979846. doi: 10.1155/2016/2979846.

Miranda TS, Heluy SL, Cruz DF, et al. The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit. Clin Oral Investig. 2018 May 8. doi: 10.1007/s00784-018-2471-5. [Epub ahead of print].

Tron'ko ND, Zak KP. Obesity and diabetes. Likars'ka sprava. 2013;8(1125):3-21. (in Ukrainian).

Kumar S, Wilson B, Watson L, Alsop J. Obesity is associated with poorer clinical outcomes following insulin initiation for patients with type 2 diabetes. In: Minutes of the 44th Genral Assembly of the European Association for the Study of Diabetes. Diabetologia. 2009;52(Suppl 1):S1-S550. doi: 10.1007/s00125-009-1445-1.

Zak KP, Mankovsky BN, Melnichenko, SV, et al. Immunity in patients with type 2 diabetes mellitus in complex with concomitant metabolic syndrome/obesity - Communication 2: Role of adipocytokines (interleukin-6, tumor necrosis factor alpha, leptin and adiponectin). Endokrynologia. 2013;18(2):26-32. (in Russian).

Tsai S, Clemente-Casares X, Revelo XS, Winer Sh, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes. 2015 Jun;64(6):1886-97. doi: 10.2337/db14-1488.

Donath MY, Hess C, Palmer E. What is the role of autoimmunity in type 1 diabetes? A clinical perspective. Diabetologia. 2014 Apr;57(4):653-5. doi: 10.1007/s00125-013-3153-0.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2018

 

   Seo анализ сайта