Immune and anti-inflammatory factors in the mechanism of therapeutic effect of metformin in type 2 diabetes mellitus (analytical review including the results of own researches)

K.P. Zak, O.V. Furmanova

Abstract


The review deals with the analysis of modern li­terature, including the results of own researches on the mecha­nism of the therapeutic effect of metformin in patients with type 2 diabetes mellitus (DM2) and its complications. Despite the fact that a vast number of patients are treated with metformin, there are a large number of publications around the world in which its clinical effect is discussed, the mechanism of the curative action of metformin remains unclear. The paper pre­sents new data indicating that not only the hypoglycemic effect of metformin plays an important role in the mechanism of the curative effect in DM2 and its complications, but also its favorable effect on inflammation and immunoregulatory processes disturbed in DM2, as evidenced by a decrease in the inflammatory index (N/L index), normalization of the quantity and function of lymphocytes of various immunophenotypes and reduced levels of proinflammatory cytokines and chemokines in the blood.

Keywords


diabetes mellitus; immunity; metformin; review

References


Inzucchi SE. Is It Time to Change the Type 2 Diabetes Treatment Paradigm? No! Metformin Should Remain the Foundation Therapy for Type 2 Diabetes. Diabetes Care. 2017 Aug;40(8):1128-1132. doi: 10.2337/dc16-2372.

American Diabetes Association. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes - 2018. Diabetes Care. 2018 Jan;41(Suppl 1):S73-S85. doi: 10.2337/dc18-S008.

Song R. Mechanism of metformin: a tale of two sites. Diabetes Care. 2016;39(2):187-9. doi: 10.2337/dci15-0013.

Cho NH, Kirigia J, Mbanya JC, et al, editors. IDF Diabetes Atlas - 8thEdition. 2017. Available from: http://www.diabetesatlas.org/resources/2017-atlas.html.

Marshall SM. 60 years of metformin use: a glance at the past and a look to the future. Diabetologia. 2017 Sep;60(9):1561-1565. doi: 10.1007/s00125-017-4343-y.

Livingstone R, Boyle JG, Petrie JR; REMOVAL Study Team. A new perspective on metformin therapy in type 1 diabetes. Diabetologia. 2017;60(9):1594-1600. doi: 10.1007/s00125-017-4364-6.

Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586-1593. doi: 10.1007/s00125-017-4336-x.

Abdul-Ghani M, Migahid O, Megahed A, et al. Combination therapy with exenatide plus pioglitazone versus basal/bolus insulin in patients with poorly controlled type 2 diabetes on sulfonylurea plus metformin: the Qatar Study. Diabetes Care. 2017;40(3):325-331. doi: 10.2337/dc16-1738.

Inzucchi SE. Is It Time to Change the Type 2 Diabetes Treatment Paradigm? No! Metformin Should Remain the Foundation Therapy for Type 2 Diabetes. Diabetes Care. 2017 Aug;40(8):1128-1132. doi: 10.2337/dc16-2372.

Lu CH, Chung CH, Lee CH, et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS One. 2018 Jan 31;13(1):e0191242. doi: 10.1371/journal.pone.0191242.

Crowley MJ, Williams JWJr, Kosinski AS, D'Alessio DA, Buse JB. Metformin use may moderate the effect of DPP-4 inhibitors on cardiovascular outcomes. Diabetes Care. 2017;40(12):1787-1789. doi: 10.2337/dc17-1528.

Wu T, Trahair LG, Little TJ, et al. Effects of vildagliptin and metformin on blood pressure and heart rate responses to small intestinal glucose in type 2 diabetes. Diabetes Care. 2017;40(5):702-705. doi: 10.2337/dc16-2391.

Luo T, Nocon A, Fry J, et al. AMPK activation by metformin suppresses abnormal extracellular matrix remodeling in adipose tissue and ameliorates insulin resistance in obesity. Diabetes. 2016;65(8):2295-310. doi: 10.2337/db15-1122.

Tseng E, Yeh HC, Maruthur NM. Metformin use in prediabetes among U.S. adults, 2005-2012. Diabetes Care. 2017;40(7):887-893. doi: 10.2337/dc16-1509.

Aroda VR, Knowler WC, Crandall JP, et al. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia. 2017;60(9):1601-1611. doi: 10.1007/s00125-017-4361-9.

Herman WH, Pan Q, Edelstein SL, et al. Impact of lifestyle and metformin interventions on the risk of progression to diabetes and regression to normal glucose regulation in overweight or obese people with impaired glucose regulation. Diabetes Care. 2017;40(12):1668-1677. doi: 10.2337/dc17-1116.

Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 2010;53(5):809-20. doi: 10.1007/s00125-009-1636-9.

Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597-609. doi: 10.1016/S2213-8587(17)30194-8.

Libman IM, Miller KM, DiMeglio LA, et al. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015;314(21):2241-50. doi: 10.1001/jama.2015.16174.

Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566-1576. doi: 10.1007/s00125-017-4318-z.

Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81-98. doi: 10.2165/11534750-000000000-00000.

Buse JB, DeFronzo RA, Rosenstock J, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198-205. doi: 10.2337/dc15-0488.

Orlenko VL, Zak KP. Treatment with Glucagon-Like Peptide-1 Analogues — a Breakthrough in Diabetes Mellitus Type 2 Therapy. Mìžnarodnij endokrinologìčnij žurnal. 2014;(60):112-117. (in Russian).

Konopka AR, Esponda RR, Robinson MM, et al. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes. Cell Rep. 2016 May 17;15(7):1394-1400. doi: 10.1016/j.celrep.2016.04.024.

Jorsal T, Rhee NA, Pedersen J, et al. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia. 2018 Feb;61(2):284-294. doi: 10.1007/s00125-017-4450-9.

Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152(12):4610-9. doi: 10.1210/en.2011-1485.

Nauck M, Rizzo M, Johnson A, Bosch-Traberg H, Madsen J, Cariou B. Once-daily liraglutide versus lixisenatide as add-on to metformin in type 2 diabetes: A 26-week randomized controlled clinical trial. Diabetes Care. 2016;39(9):1501-9. doi: 10.2337/dc15-2479.

de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54-62. doi: 10.2337/dc16-1324.

Nielsen T, Bryrup T, Thomsen CW, Hansen TH, Kern T, Allin KH, et al. The effect of metformin on a healthy human gut microbiota. In: Abstracts of the 53rd EASD Annual Meeting, Lisbon, Portugal, 11-15 September 2017. Diabetologia. 2017;60(Suppl 1):1-609. doi: 10.1007/s00125-017-4350-z.

Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-1585. doi: 10.1007/s00125-017-4342-z.

Kumar S, Wilson B, Watson L, Alsop J. Obesity is associated with poorer clinical outcomes following insulin initiation for patients with type 2 diabetes. In: Minutes of the 44th Genral Assembly of the European Association for the Study of Diabetes. Diabetologia. 2009;52(Suppl 1):S1-S550. doi: 10.1007/s00125-009-1445-1.

Saienko YaA, Zak KP, Popova VV, Semionova TA. Leukocyte Composition and Immunophenotype of the Blood Lymphocytes in Women with Type 2 Diabetes Mellitus and Obesity. Mìžnarodnij endokrinologìčnij žurnal. 2016;(77):13-19. doi: 10.22141/2224-0721.5.77.2016.78748. (in Russian).

Lamanna C, Monami M, Marchionni N, Mannucci E. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2011;13(3):221-8. doi: 10.1111/j.1463-1326.2010.01349.x.

Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-53.

Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854-65.

Kooy A, de Jager J, Wulffele MG. Long-term effect of metformin on endothelial function and inflammation in type 2 diabetes treated with insulin: a randomized, placebo-controlled trial. In: Minutes of the 44th Genral Assembly of the European Association for the Study of Diabetes. Diabetologia. 2009;52(Suppl 1):S1-S550. doi: 10.1007/s00125-009-1445-1.

Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304-11. doi: 10.2337/dc12-0719.

Claesen M, Gillard P, De Smet F, Callens M, De Moor B, Mathieu C. Mortality in individuals treated with glucose-lowering agents: a large, Controlled Cohort Study. J Clin Endocrinol Metab. 2016;101(2):461-9. doi: 10.1210/jc.2015-3184.

Anabtawi A, Miles JM. Metformin: nonglycemic effects and potential novel indications. Endocr Pract. 2016;22(8):999-1007. doi: 10.4158/EP151145.RA.

Wang Q, Zhang M, Torres G, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of Drp1-mediated mitochondrial fission. Diabetes. 2017;66(1):193-205. doi: 10.2337/db16-0915.

Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia. 2017;60(9):1630-1638. doi: 10.1007/s00125-017-4349-5.

Bakris G, Taylor A, Walsh B, Burn C, Fineman M. Metformin exposure with gut-restricted delayed-release metformin in CKD stage 4 does not exceed that of current metformin used on-label: results from population PK modeling. In: Abstracts of the 53rd EASD Annual Meeting, Lisbon, Portugal, 11-15 September 2017. Diabetologia. 2017;60(Suppl 1):1-609. doi: 10.1007/s00125-017-4350-z.

Fineman M, Frias J, Bakris G, Skare S, Walsh B, Burns C, et al. Delayed-release metformin targeting the lower bowel elicits sustained improvements in HbA1c and fasting glucose with minimal systemic exposure. In: Abstracts of the 53rd EASD Annual Meeting, Lisbon, Portugal, 11-15 September 2017. Diabetologia. 2017;60(Suppl 1):1-609. doi: 10.1007/s00125-017-4350-z.

Pernicova I, Korbonits M. Metformin – mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143-56. doi: 10.1038/nrendo.2013.256.

Fernandez-Real J-M, Pickup J C. Innate immunity, insulin resistance and type 2 diabetes. Diabetologia. 2012 Feb;55(2):273-8. doi: 10.1007/s00125-011-2387-y.

Zak KP, Tronko ND, Popova VV, Butenko AK. Diabetes mellitus. Immunity. Cytokines. Kyiv: Kniga plyus; 2015. 485 р. (in Russian)

Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016;59(4):679-82. doi: 10.1007/s00125-016-3873-z.

Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465-76. doi: 10.1038/nrd4275.

Ford ES. Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national samples of US adults. Am J Epidemiol. 2002;155(1):57-64. PMID: 11772785.

Tronko ND, Zak KP Obesity and diabetes mellitus. Likarska sprava. 2013;8:3-21. (in Russian).

Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340(2):115-26. doi: 10.1056/NEJM199901143400207.

Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38. doi:  10.1016/j.jacc.2009.09.009.

Armstrong EJ, Morrow DA, Sabatine MS. Inflammatory biomarkers in acute coronary syndromes: part I: introduction and cytokines. Circulation. 2006;113(6):e72-5. doi: 10.1161/CIRCULATIONAHA.105.595538.

Wang X, Zhang G, Jiang X, Zhu H, Lu Z, Xu L. Neutrophil to lymphocyte ratio in relation to risk of all-cause mortality and cardiovascular events among patients undergoing angiography or cardiac revascularization: a meta-analysis of observational studies. Atherosclerosis. 2014;234(1):206-13. doi: 10.1016/j.atherosclerosis.2014.03.003.

Cameron AR, Morrison V, McNeilly AD, Rena G. The anti-inflammatory role of metformin; 1822-P. Diabetes. 2015;64(Suppl 1): A466-A477. doi: 10.2337/db15-1801-1846.

Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652-65. doi: 10.1161/CIRCRESAHA. 116.308445.

Arbel Y, Finkelstein A, Halkin A, et al. Neutrophil/lymphocyte ratio is related to the severity of coronary artery disease and clinical outcome in patients undergoing angiography. Atherosclerosis. 2012;225(2):456-60. doi: 10.1016/j. atherosclerosis. 2012.09.009.

Zak KP, Orlenko VL, Popova VV, et al. The role of the immune system in mechanism of metformin therapeutic effect in patients with type 2 diabetes. Mìžnarodnij endokrinologìčnij žurnal. 2017;13(5):340–6. (in Russian).

Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720-32. doi: 10.1182/ blood-2010-07-273417.

Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016;59(4):679-82. doi: 10.1007/s00125-016-3873-z.

Heuts F, Edner NM, Walker LSK. Follicular T helper cells: a new marker of type 1 diabetes risk? Diabetes. 2017 Feb;66(2):258-260. doi: 10.2337/dbi16-0062.

Coppola A, Caputo MP, Pastore D. Metformin inhibits leptin release induced by HMGB1 and exerts an anti-inflammatory action reducing TLR4/2 expression in T2D subjects; 1830-P. Diabetes. 2015;64(Suppl 1): A466-A477. doi: 10.2337/db15-1801-1846.

Hattori Y, Hattori K, Hayashi T. Pleiotropic benefits of metformin: macrophage targeting its anti-inflammatory mechanisms. Diabetes. 2015;64(6):1907-9. doi: 10.2337/db15-0090.

Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304-11. doi: 10.2337/dc12-0719.

Griffin SJ, Leaver JK, Irving GJ. Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia. 2017;60(9):1620-1629. doi: 10.1007/s00125-017-4337-9.

Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028-41. doi: 10.2337/db14-1225.




DOI: https://doi.org/10.22141/2224-0721.14.2.2018.130564

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2018

 

   Seo анализ сайта