Sarcopenia in type 2 diabetes mellitus (review and own observations)

O.A. Goncharova

Abstract


Background. A review of the literature on sarcopenia syndrome presents its definition, classifications and etiological factors. The main attention is paid to the correlation between sarcopenia and carbohydrate metabolism, in particular, between glycogen content and insulin sensitivity. The publications dealing with the mechanisms of influence of physical activity (short-term and long-term) on carbohydrate metabolism are analyzed. It is emphasized that today there is an evidence base on the role of skeletal muscles in maintaining glucose homeostasis, which justifies the importance of physical activity for the prevention of type 2 diabetes mellitus (DM) and monitoring such patients. Our observations were carried out to compare the frequency of the increase in the percentage of fat tissue (FT) and the reduction in muscle tissue in patients with different body mass index (BMI) and the effects of type 2 DM on these indicators. Materials and methods. A bioimpedance study was performed in 114 patients with type 2 DM aged 52.3 ± 1.7 years and 110 persons of the same age without type 2 DM (control group). Results. In all those surveyed with overweight and obesity, the age norms of percentage of FT were increased, regardless of the presence or absence of type 2 DM. At normal body weight in the control group in almost half of the examinees (52.0 %), there was an increase in the specific weight of the FT, and in the presence of type 2 DM, this index was significantly higher (94.1 %). This suggests that exceeding the age norms for the percentage of FT in persons with normal body weight can be regarded as a risk factor for type 2 DM. Conclusions. The incidence of a decrease in the specific weight of FT in the control group was 8.0 % in normal body weight, 20.0 % — in overweight and 80.0 % — in obesity that indicates the significance of the problem of sarcopenia, primarily in persons with obesity. Against the background of type 2 DM, these rates were significantly higher with normal body weight (41.2 %, p < 0.02), 2 times higher — with overweight, but lower (unreliably) — with obesity (61.1 %). The problem of sarcopenia in DM type 2 is relevant for patients with various BMI.

Keywords


sarcopenia; carbohydrate metabolism; physical activity; review

References


World Health Organization. Report of the WHO consultation on obesity. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 1998. Available at: www.who.int/iris/handle/10665/63854. Accessed 1998.

Bahadori B, Uitz E, Tonninger-Bahadori K, Pestemer-Lach I. et al. Body composition: the fat-free mass index (FFMI) and the body fat mass index (BFMI) distribution among the adult Austrian population — results of a cross-sectional pilot study. International Journal of Body Composition Research. 2006;4(3):123-8.

Flegal KM, Kit BK, Orpana H, et al. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71-82. doi:10.1001/jama.2012.113905.

Carnethon MR, et al. Association of Weight Status with Mortality in Adults with Incident Diabetes. JAMA. 2012;308(6):619-20. doi: 10.1001%2Fjama.2012.9282.

Mullen JT, Moorman DW, Davenport DL. The obesity paradox: body mass index and outcomes in patients undergoing nonbariatric general surgery. Ann Surg. 2009 Jul;250(1):166-72. PMID: 19561456. doi: 10.1097/SLA.0b013e3181ad8935.

Trushkina IV, Filippov GP, Leontieva IV. Structure of body in patients with overweight. Sibirskiy meditsinskiy zhurnal. 2010;3(1):38-44. (in Russian).

Romero-Corral A, Somers VK, Sierra-Johnson J. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010 Mar;6:737-46. PMID: 19933515. doi: 10.1093/eurheartj/ehp487.

Goncharova OA, Partzhaladze VI, Iliyna IM. Metabolic obesity in normal body weight. Unsolved issues of diagnostics. Endokrynologiya. 2013;4:50-4. (in Russian).

Karachentsev YI, Goncharova OA, Partzhaladze VI, Iliyna IM. Diagnostics of metabolic obesity in patients with type 2 diabetes mellitus with normal body weight. Anthropometric methods. Kyiv, 2014. 4 p. (in Ukrainian).

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-423. PMID: 20392703. doi: 10.1093/ageing/afq034.

Cruz-Jentoft AJ, Landi F, Topinková E, Michel JP. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care. 2010 Jan;13(1):1-7. PMID: 19915458. doi: 10.1097/MCO.0b013e328333c1c1.

Cawthon PM, Marshall LM, Michael Y, et al. Frailty in older men: prevalence, progression, and relationship with mortality. J Am Geriatr Soc. 2007 Aug;55:1216-23. PMID: 17661960. doi: 10.1111/j.1532-5415.2007.01259.x.

Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769-74. PMID: 17493199. doi: 10.1111/j.1532-5415.2007.01140.x.

Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J Gerontol Biol Sci Med Sci. 2006 Oct;61(10):1059-64. PMID: 17077199.

Pedersen BK, Febbraio MA. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol Rev. 2008 Oct:88(4):1379-1406. PMID: 18923185. doi: 10.1152/physrev.90100.2007.

Vasina AY, Didur MD, Yygi AA. et al. Muscular tissue as endocrine regulator and the problem of physical inactivity. Vestnik Sankt-Peterburgskogo universiteta. Seruya 11. Meditsina. 2014;2:5-15. (in Russian).

Chernozub AA. Safe and critical levels of physical activities for the trained and untrained persons in the conditions of muscular activity of power orientation. Fiziologichnyi zhurnal. 2016;62(2):110-6. (in Ukrainian).

Sakharov DA, Tevis M, Tonevitskiy AH. Analysis of human basic isoform of growth hormone before and after intensive physical activities. Bulleten’ eksperimental’njy biologii i meditsiny. 2008;146(10):446-50. (in Russian).

Lima-Cabello E, Cuevas MJ, Garatachea N. et al. Eccentric exercise induces nitric oxide synthase expression through nuclear factor-kB modulation in rat skeletal muscle. J Appl Physiol. 2010;108:578-83. PMID: 20044475. doi: 10.1152/japplphysiol.00816.2009.

Stofkova A. Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocrine Regulation. 2009;43(4):157-68. PMID: 19908934.

Noskov SM, Margazin VA, Noskova AS. Paradox of obesity: muscular hypothesis and tactics of physical rehabilitation. Lechebnaya fizkul’tura i sportivnaya meditsina. 2010;6(78):53-60. (in Russian).

Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantification of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan;322(4):223-8. PMID: 2403659. doi: 10.1056/NEJM199001253220403.

Jensen J, Rustad P, Kolnes AJ, Lai YC. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise. Front Physiol. 2011;2(112):56-67. doi: 10.3389%2Ffphys.2011.00112.

Volek JS, Freidenreich DJ, Saenz C, Kunces LJ, Creighton BC, Bartley JM, Davitt PM, Munoz CX, Anderson JM, Maresh CM, Lee EC, Schuenke MD, Aerni G, Kraemer WJ, Phinney SD. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism. 2016;65(3):100-10. PMID: 26892521. doi: 10.1016/j.metabol.2015.10.028.

Matiunina YV, Kurashvili VA. A role of endogenous glycogen in the increase of endurance of organism. Vestnik sportivnykh innovatsiy. 2016;52:1-30. (in Russian).

Nakonechnaya OA, Gorbach TV, Martynova SN, Yarmysh NV, Tkachenko AS. Diagnostika glikogenozov. Metodicheskie ukazanija dlja samostojatel'noj podgotovki studentov medicinskih i stomatologicheskogo fakul'tetov po biologicheskoj himii [Glycogenosis diagnosis. Methodical guidance for independent preparation of students medical and stomatological faculties on biological chemistry]. Kharkiv, 2016. 35 p. (in Russian).

Vendelbo MH, Clasen BF, Treebak JT, Moller L, Krusenstjerna-Hafstrom T, et al. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol Endocrinol Metab. 2012 Jan 15;302(2):190-200. PMID: 22028408. doi: 10.1152/ajpendo.00207.2011.

Vendelbo MH, Møller AB, Christensen B, Nellemann B, Clasen BFF, Nair KS, et al. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling. PLoS ONE. 2014 July 14;9(7):1020-31. doi: 10.1371/journal.pone.0102031.

Prebil M, Jensen J, Zorec R, Kreft M. Astrocytes and energy metabolism. Arch Physiol Biochem. 2011 May;117:64-9. PMID: 21214428. doi: 10.3109/13813455.2010.539616.

Ovsiannikov VG. Obshhaja patologija: patologicheskaja fiziologija: uchebnik [General pathology: physiopathology]. Rostov, 2015. 247 p. (in Russian).

Egan B, Zierath JR. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metabolism. 2013;17(2):162-84. PMID: 23395166. doi: 10.1016/j.cmet.2012.12.012.

Rui L. Energy metabolism in the liver. Compr Physiol. 2014 Jan;4(1):177-197. PMID: 24692138. doi: 10.1002/cphy.c130024.

Matsui T, Ishikawa T, Ito H, Okamoto M, Inoue K, Lee MC, Fujikawa T, Ichitani Y, Kawanaka K, Soya H. Brain glycogen supercompensation following exhaustive exercise. Physiol. 2012 Feb 1;590(3):607-16.

Jensen J. The role of skeletal muscle glycolysis in whole body metabolic regulation and type 2 diabetes. In Glycolysis: Regulation, Processes and Diseases. Lithaw H., editor. New York: Nova Science Publishers, Inc. 2009:5-83.

Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006 Feb;7(2):85-96. PMID: 16493415. doi: org/10.1038/nrm1837.

Lauritzen HP. Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach. Exerc Sport Sci Rev. 2013;41(2):77-86. PMID: 23072821. doi: 10.1097/JES.0b013e318275574c.

Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol Scand. 2005;183:3-12. PMID: 15654916. doi: 10.1111/j.1365-201X.2004.01382.x.

Larance M, Ramm G, James DE. The GLUT4 code. Mol Endocrinol. 2008 Feb;22(2):226-33. PMID: 17717074. doi: 10.1210/me.2007-0282.

Schultze SM, Jensen J, Hemmings BA, Tschopp O, Niessen M. Promiscuous affairs of PKB/AKT isoforms in metabolism. Arch Physiol Biochem. 2011;117:70-7. PMID: 21214427. doi: 10.3109/13813455.2010.539236.

Li MV, Chen W, Harmancey RN, et al. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res Commun. 2010 May 7;395(3):395-400. PMID: 20382127. doi: 10.1016/j.bbrc.2010.04.028.

Bouskila M, Pajvani UB, Scherer PE. Adiponectin: a relevant player in PPAR--agonist-mediated improvements in hepatic insulin sensitivity? Int J Obes.Relat. Metabol Disord. 2005 Mar;29(1):17-23. PMID: 15711577. doi: 10.1038/sj.ijo.0802908.

Højlund K, Beck-Nielsen H. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes? Curr Diabetes Rev. 2006;2:375-95. PMID: 18220643.

Frøsig C, Rose AJ, Treebak JT, Kiens B, Richter EA, Wojtaszewski JF. Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes. 2007;56:2093-102. PMID: 17513702. doi: 10.2337/db06-1698.

Wadley GD, Konstantopoulos N, Macaulay L, et al. Increased insulin-stimulated Akt pSer473 and cytosolic SHP2 protein abundance in human skeletal muscle following acute exercise and short-term training. J Appl Physiol. 2007;102:1624-31. doi:10.1152/japplphysiol.00821.2006.

van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol (Lond.). 2001 Oct 1;536 (Pt 1):295-304. PMID: 11579177.

Otto Buczkowska E, Dworzecki T. The role of skeletal muscle in the regulation of glucose homeostasis. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 2003;9(2):93-7. (in Polish). PMID: 14575619.

Jensen J, Jebens E, Brennesvik EO, Ruzzin J, Soos MA, Engebretsen EM, O’Rahilly S, Whitehead JP. Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab. 2005 Dec 9;290:154-62. doi: 10.1152/ajpendo.00330.2005.

Derave W, Hansen BF, Lund S, Kristiansen S, Richter EA. Muscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity. Am J Physiol. 2000;279:947-55. PMID: 11052948.

Garcia-Roves PM, Han DH, Song Z, Jones TE, Hucker KA, Holloszy JO. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol Endocrinol Metab. 2003 Oct;285(4):729-36. PMID: 12799316. doi: 10.1152/ajpendo.00216.2003.

Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U.S.A. 2007;104:12587-94. PMID: 17640906. doi: 10.1073/pnas.0705408104.

Aas V, Rokling-Andersen M, Wensaas AJ, et al. Lipid metabolism in human skeletal muscle cells: effects of palmitate and chronic hyperglycaemia. Acta Physiol Scand. 2005 Jan;183(1):31-41. PMID: 15654918. doi: 10.1111/j.1365-201X.2004.01381.x.

Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297(3):578-91. PMID: 19531645. doi: 10.1152/ajpendo.00093.2009.

Hoehn KL, Salmon AB, Hohnen-Behrens C, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U.S.A. 2009;106:17787-92. PMID: 19805130. doi: 10.1073/pnas.0902380106.

Acheson KJ, Schutz Y, Bessard T. et. al. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988;48:240-7. PMID: 3165600.

Haemmerle G, Lass A, Zimmermann R. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006 May;312(5774):734-7. PMID: 16675698. doi: 10.1126/science.1123965.

Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014 Jun;510(7503):84-91. PMID: 24899308. doi: 10.1038/nature13478.

Srivastava RA, Pinkosky SL, Filippov S, et al. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res. 2012 Dec;53(12):490-514. PMID: 22798688. doi: 10.1194/jlr.R025882.

Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2015;38(1):140-9. PMID: 22517736. doi: 10.2337/dc12-0413.

UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998 Sep 12;352(9131):854-65. PMID: 9742977.

Jones KL, Arslanian S, Peterokova VA, Park JS, Tomlinson MJ. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2002 Jan;25(1):89-94. PMID: 11772907.

Lamanna C, Monami M, Marchionni N, Mannucci E. Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomised clinical trials. Diabetes Obes Metab. 2011 Mar;13(3):221-8. PMID: 21205121. doi: 10.1111/j.1463-1326.2010.01349.x.

Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem. 2011;286(1):1-11. PMID: 21059655. doi: 10.1074/jbc.M110.121806.

Oreopoulos A, Ezekowitz JA, McAlister FA, et al. Association between direct measures of body composition and prognostic factors in chronic heart failure. Mayo Clin Proc. 2010;85(7):609-617. PMID: 20592169. doi: 10.4065/mcp.2010.0103.

Oreopoulos A, Padwal R, Kalantar-Zadeh K, Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008 Jul;156(1):13-22. PMID: 18585492. doi: 10.1016/j.ahj.2008.02.014.

Rolland Y, Luawers-Cances V, Pahor M, et al. Muscle strength in obese elderly women: effect of recreation physical activity in a cross-sectional study. Am J Clin Nutr. 2004 Apr;79(4):552-7. PMID: 15051596.

Shibata R, Ouchi N, Kihara S. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem. 2004;279:28670-4.

Walsh K. Adipokines, myokines and cardiovascular disease. Circ J 2009 Jan;73(1):13-8. PMID: 19043226.

Olde Rikkert MG, Rigaud AS, van Hoeyweghen RJ, et al. Geriatric syndromes: medical misnomer or progress in geriatrics? Neth J Med. 2003 Mar;61(3):83-7. PMID: 12765229.

Kyle UG, Genton L, Karsegard L, et al. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001 Mar;17(3):248-253. PMID: 11312069.




DOI: https://doi.org/10.22141/2224-0721.13.2.2017.100611

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© "Publishing House "Zaslavsky", 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru